October 28, 2008 ---**Organics**

Mary Logan U.S. EPA Region V (SR-6J) 77 W Jackson Boulevard Chicago, IL 60604-3590

Sheila Abraham Ohio EPA - NE District Office Div Of Emergency & Remedial Response 2110 East Aurora Road Twinsburg, OH 44087

Remedial Response Section Manager Ohio EPA - DERR P O Box 1049 Lazarus Government Center Office 122 South Front Street Columbus, OH 43216-1049

> SEPTEMBER 2008 MONTHLY REPORT Re:

> > RI/FS & REMEDIAL DESIGN & REMOVAL ACTION

NEASE CHEMICAL SITE

SALEM, OHIO

amer Domasly.

In accordance with Paragraph X E of the Administrative Order by Consent regarding a Remedial Investigation/Feasibility Study (RI/FS) of the Nease Chemical Site in Salem, Ohio, attached is a copy of the September 2008 RI/FS Progress Report This report also includes the monthly progress report for the remedial design (OU-2) in accordance with Paragraph X of the Administrative Order on Consent, effective as of May 10, 2006

Additionally, in accordance with Paragraph 14 of the Administrative Order by Consent, signed December 17, 1993, attached is a copy of September 2008 Removal Action Progress Report

The agency agreed to submit this report later than the 10th working day of the month.

Dr Rainer F. Domalski

Site Coordinator

Enclosures

M. Hardy/Heidi Goldstein - Thompson Hine Steve Finn - Golder Associates, Inc.

102808

US EPA RECORDS CENTER REGION 5

201 Struble Road, State College, PA 16801 Phone. 814-231-9200; Fax 814-239-1567

NEASE CHEMICAL SITE, SALEM, OHIO REMEDIAL INVESTIGATION/FEASIBILITY STUDY REMEDIAL DESIGN (OU-2) MONTHLY PROGRESS REPORT SEPTEMBER 2008

INTRODUCTION

This progress report has been prepared in accordance with Paragraph XE of the Administrative Order of Consent (AOC) regarding a Remedial Investigation/Feasibility Study (RI/FS) and Paragraph X of the Administrative Order on Consent regarding the Remedial Design (RD/OU-2) of the Nease Chemical Site in Salem, Ohio. The report summarizes the major RI/FS and RD actions during the month along with investigation results and any problems encountered in the project. Activities planned for next month are also presented.

2 SUMMARY OF ACTIVITIES PERFORMED

2 1 PROJECT ACTIVITY SUMMARY

The activities that were initiated and/or completed during the month are described. All activities were performed in accordance with the detailed protocol provided in the approved Work Plan.

2.2 FIELDWORK

2.2 1 RI/FS

None.

rain in the

2 2.2 RD (OU-2)

None

2.3 Reports

2.3.1 RI/FS

A draft Interim Deliverable for the OU-3 Feasibility Study (FS) was submitted to the agencies for review. Agencies' comments to this document were addressed during this month. The draft final FS was submitted by the March 20, 2008 and received agencies' comments on May 7, 2008. The revised final FS was submitted on June 5, 2008. The document was finally approved by US EPA in a letter dated June 30, 2008.

A Proposed Remedial Action Plan (PRAP) was published by EPA in July 2008. The public comment period run from July 14 through August 14, 2008. A public meeting was held in the public library in Salem on July 31, 2008. The final Record of Decision (ROD) was signed by the agency on September 24, 2008.

2.3.2 RD (OU-2)

Baseline Technical Memorandum Report

- o Data validation of the analytical results of the discrete mirex surface soil samples
- Revising the Vapor Intrusion Assessment and Mitigation Report based on comments from the agencies.
- O Continued to work on a response to agency recommendations/considerations including a bedrock contour map and additional investigation work needed in the southern site area.

2 4 MEETINGS

None.

3 VARIATIONS FROM THE APPROVED WORK PLAN

None.

4 RESULTS OF SAMPLING, TESTS AND ANALYSES

Results from sampling events were and will be provided to the agencies in specific reports.

5 PROJECT SCHEDULE

The current Work Plan schedule identifies completion and target dates for project activities. Those scheduled to occur over the next several months include:

- o Finalize PDI work incl. the preparation of Technical Memoranda.
- o Start Remedial Design Work

6 DIFFICULTIES ENCOUNTERED AND ACTION TAKEN TO RESOLVE PROBLEMS

No significant difficulties were encountered.

7 PERSONNEL CHANGES

None

8 ANTICIPATED PROJECT ACTIVITIES FOR OCTOBER 2008

- Monthly Progress Report September 2008
- RD (OU-2)
 - o Baseline Technical Memorandum Report -
 - Response to agency recommendations and considerations and for implementation of interim measures for the removal of NAPL at TW06-21.

- Submit a revised Vapor Intrusion Assessment and Mitigation Report based on agency comments.
- Prepare a summary/recommendation memorandum regarding the discrete mirex surface soil sample results.
- Submit letters to adjacent property owner's presenting the sampling results and boring logs for monitoring wells installed in their property.
- Bedrock contour map.

TABLE 1 NEASE CHEMICAL SITE, SALEM, OHIO RI/FS AND RD (OU-2) SCHEDULE

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE			
	RI/FS	- RD (OU-2)		
- #:	Documentation of the Site Activities through July 31, 2004 can be reviewed in the July 2004 Monthly Progress Report			
August 30, 2004 September 1, 2004	US EPA Region V/ OEPA approve Endangerment Assessment Draft Feasibility Study (OU-2) submitted to the agencies for review			
September 9, 2004	Submit Monthly Progress Report			
September 13, 2004	Submit Final Revision to Endangerment Assessment			
October 8, 2004	Submit Monthly Progress Report			
November 10, 2004	Submit Monthly Progress Report			
November 22, 2004	Received Agencies' comments for draft FS (OU-2)			
December 10, 2004	Submit Monthly Progress Report			
January 10, 2005	Submit Monthly Progress Report			
February 10, 2005	Submit Monthly Progress Report			
March 1, 2005	Final Draft Feasibility Study (OU-2) submitted to agencies for review			
March 4, 2005	Submit Monthly Progress Report			
April 8, 2005 April 21, 2005	Submit Monthly Progress Report US EPA Region V/OEPA approve			
May 9, 2005	Final Feasibility Study for OU-2 Submit Monthly Progress Report			
May 31, 2005	US EPA Region V published the Proposed Remedial Action the OU-2 (onsite)			
June 9, 2005	Submit Monthly Progress Report			
July 8, 2005	Submit Monthly Progress Report			
August 10, 2005	Submit Monthly Progress Report			
Aug. 1 – 15, 2005	MFLBC – Reconnaissance of sediment bodies			
September 9, 2005	Submit Monthly Progress Report			
September 29, 2005	US EPA Region V signs Final Record of Decision for OU-2			
Oct. 10, 2005	Submit Monthly Progress Report			

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE		
	RI/FS	RD (OU-2)	
November 9, 2005	_Submit Monthly Progress Report		
December 8, 2005	Submit Monthly Progress Report		
January 9, 2006	Submit Monthly Progress Report		
February 8, 2006 ₋	Submit Monthly Progress Report		
March 15, 2006	Submit Monthly Progress Report		
April 10, 2006	Submit Monthly Progress Report		
May 8, 2006	Submit Monthly Progress Report		
May 10, 2006		Administrative Order on Consent for OU-2 Remedial Design effective	
May 25, 2006		Submittal of draft PDI Workplan	
June 8, 2006	Submit Mont	hly Progress Report	
June 9, 2006		ACO Financial Assurance – Trust Fund placed	
June 28, 2006		US EPA comments to draft PDI workplan received	
July 10, 2006	Submit Mont	hly Progress Report	
July 12, 2006		Sampling of well PZ-6B-U	
Aug. 1, 2006		Submit revised PDI Workplan	
Aug. 4, 2006	Submit Mont	hly Progress Report	
Aug. 21, 2006		Commenced with PDI Fieldwork	
Aug 28, 2006		Conditional Approval of PDI Workplan	
Sept. 8, 2006	i	hly Progress Report	
Sept. 18, 2006	Soil Sampling in the MFLBC Flood Plain		
Sept. 27, 2006		Submit Final PDI Workplan incl response to agencies' comments	
October 8, 2006	Submit Mont	hly Progress Report	
Nov 6, 2006	Submit Mont	hly Progress Report	
Dec. 12, 2006	Submit Mont	hly Progress Report	
Dec. 13, 2006	OU-3 Meeting in US EPA Chicago Office		
Jan 8, 2007	Submit Monti	hly Progress Report	
Febr 6, 2007	Submit Monti	hly Progress Report Submittal S/S/S Treatability Study Report	
March 7, 2007		through Phase III	
March 19, 2007	Submit Mont	hly Progress Report	
March 22, 2007		Submittal Proposal Bio-Treatability Study for Benzene in Groundwater	
April 4, 3007	Submit Montl	hly Progress Report	
May 21, 2007	Submit Montl	hly Progress Report	
June 7, 2007	Submit Monthly Progress Report		

DATE	TASK/ACTIVITY/DE	ELIVERABLE/MILESTONE
June 13, 2007 June 30, 2007		Submit Technical Memorandum – Baseline Conditions to agencies Installed Sub-slab Vapor Systems at two residential homes
July 6, 2007	Submit Mont	hly Progress Report
August 1, 2007		Agencies' approval for Phase IV S/S/S Treatability Study
Aug. 7, 2007	Submit Mont	hly Progress Report
September 24, 2007	Submit Monti	hly Progress Report
October 5, 2004	Submit Monti	hly Progress Report
November 7, 2007	Submit Montl	hly Progress Report
December 12, 2007	Submit Interim Deliverable for OU-3 FS	
December 21, 2007	Submit Montl	nly Progress Report
January 3, 2008	Submit Monti	hly Progress Report
February 7, 2008	Submit Montl	nly Progress Report
February 28,		 Letter to agencies about Proposed Mirex Analysis of discrete soil samples
2008		 Memo to agencies regarding Analytical Laboratories for Mirex Testing
February 29, 2008		Submit Vapor Intrusion Report to agencies
March 3, 2008	Submit Monti	nly Progress Report
March 11,		Submit S/S/S Treatability Study to
2008 March 14,		agencies
2008		Submit NZVI Pilot Study to agencies
March 20, 2008	Submit Draft FS (OU-3) to agencies	
April 8, 2008	J	nly Progress Report
May 7, 2008	l .	nly Progress Report
	Received Agencies' Comments to Draft FS (OU-3)	
June 5, 2008	Submit Revised Final FS (OU-3) to Agencies	
June 12, 2008	.	nly Progress Report
June 30, 2008	Received approval of Final FS (OU-3)	
July 7, 2008		nly Progress Report
July 14 – Aug. 13, 2008	Public comment period (OU-3/PRAP)	
July 31, 2008	Public Meeting (OU-3/PRAP)	
Aug. 28, 2008	Submit Month	nly Progress Report

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE
Sept 11, 2008	Submit Monthly Progress Report
Sept 24, 2008	OU-3 Record of Decision signed by agency
Oct 28, 2008	Submit Monthly Progress Report

NEASE CHEMICAL SITE, SALEM, OHIO REMOVAL ACTION MONTHLY PROGRESS REPORT SEPTEMBER 2008

______1.0 INTRODUCTION _ ____

This progress report has been prepared in accordance with Paragraph 14 of the "Order" section of the Administrative Order by Consent (AOC) Docket No. V-W-94-C-212, effective November 17, 1993 regarding a Removal Action for the Nease Chemical Site in Salem, Ohio. The report summarizes the major activities during the month along with investigation results and any problems encountered on the project. Activities planned for next month are also presented.

2.0 SUMMARY OF ACTIVITIES PERFORMED

2.1 PROJECT ACTIVITY

The activities that were initiated and/or completed during this month are described below. Activities were performed in accordance with the Removal Action AOC.

Ohio EPA performed a RCRA Site inspection during this month. The inspection from OEPA was received with a letter dated June 20, 2008.

The removal of an old metal tank and a plastic container was conducted in the last week of August. The disposal of the recovered sediments as well as the soil recovered during the PDI drench work was scheduled for the beginning of October.

2 2 WORK PLAN PREPARATION/REPORTS

None

2.3 FIELDWORK

2.3.1 SITE INSPECTIONS

The results of the monthly site inspection carried out at the site on September 30, 2008 are shown in Attachment 1.

2.3 2 MONTHLY WATER LEVEL MEASUREMENTS

The next water level monitoring in wells will occur in November 2008.

2.3.3 TREATMENT PLANT OPERATION

The treatment plant operated mostly normal throughout the month.

2.4.1.1 MEETINGS

None

3.0 VARIATIONS FROM THE APPROVED REMOVAL ACTION WORK PLAN

None

4.0 RESULTS OF INSPECTIONS, ENVIRONMENTAL SAMPLING, TESTS AND ANALYSES

. १८८९ चिष्णांचा राष्ट्रा चारा स्थापना विकास

Water monitoring samples were collected from the treatment plant on September 2 and 9, 2008 (Attachments 2 and 3). The acute and chronic testing was performed during August 2008 (Attachments 4 and 5).

5.0 PROJECT SCHEDULE

None

6.0 DIFFICULTIES ENCOUNTERED AND ACTION TAKEN TO RESOLVE PROBLEMS

None

7.0 PERSONNEL CHANGES

None.

8.0 TYPES AND QUANTITIES OF REMOVED MATERIALS

For the period from September 1 through 30, 2008 the following material was removed:

- 5,200 gallons of leachate and/or backwash water were disposed offsite at a licensed treatment facility.
- Approximately 102,178 gallons were pumped from Leachate Collection System 1 (LCS-1) (total for LCS-1 =21,927,654 gal).
- 4,237 gallons were pumped from Leachate Collection System 2 (LCS-2) (total for LCS-2 = 1,740,203 gal).
- 2,724 gallons of water were pumped from Pond 1 (total for the pond = 1,032,670 gallons).
- Approximately 8.5 pounds of organic compounds were removed during pumping (estimate based on average VOC/SVOC concentrations for each source).

9.0 ANTICIPATED PROJECT ACTIVITIES FOR OCTOBER 2008

Removal Action activities scheduled for the upcoming month include on-going implementation of the approved Removal Action Work Plan involving:

- Collection of groundwater from the existing collection systems LCS-1, LCS-2 and Pond 1
 - Monthly Progress Report for September 2008
 - Tank Removal Disposal of recovered sediments.

n de la companya de la co

102808

TABLE 1 NEASE CHEMICAL SITE, SALEM, OHIO REMOVAL ACTION SCHEDULE

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE
0 1 1	Documentation of the Site Activities through July 31, 2004 can be reviewed in the July 2004 Monthly Progress Report
September 9, 2004	Submit Monthly Progress Report
October 8, 2004	Submit Monthly Progress Report
November 10, 2004	Submit Monthly Progress Report
December 10, 2004	Submit Monthly Progress Report
January 10, 2005	Submit Monthly Progress Report
February 10, 2005	Submit Monthly Progress Report
March 4, 2005	Submit Monthly Progress Report
April 8, 2005	Submit Monthly Progress Report
May 9, 2005	Submit Monthly Progress Report
June 9, 2005	Submit Monthly progress Report
July 8, 2005	Submit Monthly Progress Report
August 10, 2005	Submit Monthly Progress Report
September 9, 2005	Submit Monthly Progress Report
October 10, 2005	Submit Monthly Progress Report
November 9, 2005	Submit Monthly Progress Report
December 8, 2005	Submit Monthly Progress Report
January 9, 2006	Submit Monthly Progress Report
February 8, 2006	Submit Monthly Progress Report
March 15, 2006	Submit Monthly Progress Report
April 10, 2006	Submit Monthly Progress Report
May 8, 2006	Submit Monthly Progress Report
June 8, 2006	Submit Monthly Progress Report
July 10, 2006	Submit Monthly Progress Report
August 4, 2006	Submit Monthly Progress Report
September 8, 2006	Submit Monthly Progress Report
October 8, 2006	Submit Monthly Progress Report
November 6, 2006	Submit Monthly Progress Report
December 12, 2006	Submit Monthly Progress Report
January 8, 2007	Submit Monthly Progress Report
February 6, 2007	Submit Monthly Progress Report
March 19, 2007	Submit Monthly Progress Report
April 4, 2007	Submit Monthly Progress Report
May 21, 2007	Submit Monthly Progress Report

DATE	TASK/ACTIVITY/DELIVERABLE/MILESTONE
June 7, 2007 -	Submit Monthly Progress Report
July 6, 2007	Submit Monthly Progress Report
July 2-14, 2007	Implement Treatment Plant Modifications
August 7, 2007	Submit Monthly Progress Report
Sept. 14, 2007	Submit Monthly Progress Report
October 5, 2004	Submit Monthly Progress Report
November 7, 2007	Submit Monthly Progress Report
December 21, 2007	Submit Monthly Progress Report
January 3, 2008	Submit Monthly Progress Report
February 7, 2008	Submit Monthly Progress Report
March 3, 2008	Submit Monthly Progress Report
April 8, 2008	Submit Monthly Progress Report
May 7, 2008	Submit Monthly Progress Report
June 12, 2008	Submit Monthly Progress Report
July 7, 2008	Submit Monthly Progress Report
Aug. 28, 2008	Submit Monthly Progress Report
Sept. 11, 2008	Submit Monthly Progress Report
October 28, 2008	Submit Monthly Progress Report

ATTACHMENT 1

· · · — —

. ----

RESULTS OF MONTHLY SITE INSPECTION
NEASE CHEMICAL SITE, SALEM, OHIO
SEPTEMBER 2008

SITE INSPECTION FORM RUETGERS-NEASE CORPORATION Nease Site, Salem, Ohio

Date of Inspection:9-30-08			
Entry Time: 8:30 Hes.	Exit Time: _	1030 HRS	
Weather: Covor 62°			
Inspector's Name: DEUNIS L. LANE			
	lls and Baird, Inc.		

INSPECTION RESULTS

SPECIFIC OBSERVATIONS:

Structures

(Responses: S = Satisfactory U = Unsatisfactory Yes/No Levels Measured in Feet, N/A = Not Applicable)

	Pump		Water Level	Berm Erosion	Visible Leakage
Leachate Collection System 1 (LCS-1)	S	S	10.29	N/A	No
Leachate Collection System 2 (LCS-2)	S	S	11.65	NA	No
Pond 1 Pumphouse	S	S	10.40	N/A	No
Pond 1 Berm	N/A	N/A	N/A	No	No
Pond 2 Embankment	N/A	N/A	N/A	No	No
Exclusion Area A Embankment	NA	N/A	NA	No	No
Storage Tank	N/A	Ś	3.16	N/A	No
Other (specify)					

SPECIFIC OBSERVATIONS:

Sediment Barriers

Condition of Sediment Barriers

Condition of Sediment Barriers			
Barrier ID:	Fabric Intact?	By Passing Evident?	Is Maintenance Necessary?
Sediment Control Structure 1	YES	No	No
Sediment Control Structure 2	YES	No	No
Fabric Barrier 2	YES	No-	No
Fabric Barrier 3	YES	No	No
Fabric Barrier 4	YES	No	No
Fabric Barrier 5	YES	No	No.
Fabric Barrier 8	YES	No	No
Fabric Barrier 9	YES	No	No
Fabric Barrier 10	YES	No	No
Rock Barrier 1	YES	No	No
Rock Barrier 2	YES	No	No
Pond 7 - North	YES	No	No
Pond 7 - South	YES	No	No

SPECIFIC OBSERVATIONS:

Seeps (if present, use more forms, as necessary)

Seep/ID (yr-month-#)	Located on Map	Areal Extent, (ft.2)	Magnitude (flow?; ponding?)
94-7-1	YES	20	NON-FLOWING SEEP
96-8-2	YES	20	Non-Francing SEEP Non-Francing SEEP

Note Seep ID # equal the "nth' observed seep during the yr-month in question

	,,	
ADDITIONAL OBSER	VATION OR REMARKS:	
Inspector's Name:	DENNIS L. LAME	·
Inspector's Signature:	Dennis L'Lane	
Date:	9-30-08	

ATTACHMENT 2

WATER SAMPLING RESULTS – SEPTEMBER 2, 2008 NEASE CHEMICAL SITE, SALEM, OHIO

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

SALEM, OHIO SITE

Lot #: A8I030143

Dr. Rainer Domalski

Rutgers Organics Corporation 201 Struble Road State College, PA 16801

TESTAMERICA LABORATORIES, INC.

Kenneth J. Kuzion Project Manager

September 16, 2008

SAMPLE SUMMARY

A81030143

<u>WO # S</u>	AMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME_
KV6TG	001	INFLUENT	09/02/08	
KV6T3	002	OUTFALL	09/02/08	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages
- All calculations are performed before rounding to avoid round-off errors in calculated results
- Results noted as "ND" were not detected at or above the stated limit
- This report must not be reproduced, except in full, without the written approval of the laboratory
- Results for the following parameters are never reported on a dry weight basis color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight

Rutgers Organics Corporation

Client Sample ID: INFLUENT

General Chemistry

Lot-Sample #...: A8I030143-001 Work Order #...: KV6TG Matrix.....: WG

Date Sampled...: 09/02/08 13:00 Date Received..: 09/03/08

				PREPARATION-	PREP
RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
ND	0.10	mg/L	MCAWW 300.0A	09/03/08	8248085
D	llution Fact	or: 1			
ND	0.10	mg/L	MCAWW 300.0A	09/03/08	8248084
D	llution Facto	or 1			
ND	2.0	mg/L	MCAWW 350.2	09/09/08	8253395
D	ilution Facto	or: 1			
ND	0.1	mg/L	MCAWW 365.2	09/12/08	8256459
	ND D D ND D	ND 0.10 Dilution Facto ND 0.10 Dilution Facto ND 2.0 Dilution Facto ND 0.1	ND 0.10 mg/L Dilution Factor: 1 ND 0.10 mg/L Dilution Factor 1 ND 2.0 mg/L Dilution Factor: 1	ND 0.10 mg/L MCAWW 300.0A Dilution Factor: 1 MCAWW 300.0A ND 0.10 mg/L MCAWW 300.0A Dilution Factor 1 MCAWW 350.2 Dilution Factor: 1 MCAWW 365.2	RESULT RL UNITS METHOD ANALYSIS DATE ND 0.10 mg/L MCAWW 300.0A 09/03/08 Dilution Factor: 1 MCAWW 300.0A 09/03/08 ND 0.10 mg/L MCAWW 300.0A 09/03/08 ND 2.0 mg/L MCAWW 350.2 09/09/08 Dilution Factor: 1 MCAWW 365.2 09/12/08

Rutgers Organics Corporation

Client Sample ID: OUTFALL

General Chemistry

Lot-Sample #...: A8I030143-002 Work Order #...: KV6T3 Matrix.....: WG

Date Sampled...: 09/02/08 13:00 Date Received..: 09/03/08

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Nitrate as N	ND D	0.10	mg/L or 1	MCAWW 300.0A	09/03/08	8248085
Nitrite as N	ND D	0.10	mg/L or· 1	MCAWW 300.0A	09/03/08	8248084
Nitrogen, as Ammonia		2.0 ilution Fact	mg/L or: 1	MCAWW 350.2	09/09/08	8253395
Total phosphorus	ND	0.1 ulution Fact	mg/L or: 1	MCAWW 365.2	09/12/08	8256459

QUALITY CONTROL SECTION

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

AL-4142 (0408)		Project	Mar	18000														Date						Chair of C		4	
Rutgers Organics Corp),	Teleph		_		ìnez	- [ام(na.	lsk	ςĹ						_		7-2	2-0	28			Chain of Cu	1 <u>80</u>		
Rutgers Organics Corp Address 201 Struble Road State Zip						920						-15	56	7_				Lab	Numb	1 0 1				Page		_ of	1
City State Zip	Code						LA	b Čo	ntact											ch lis							
Project Name and Location (State)	16801	Carrier	May	BIII N	Qn lumb	e.				—			\dashv	11.	7	丁	nore	spac	Se IS	need	ea)	\top	\neg				
Salem, OHIO SITE Contract/Purchase Order/Quote No.														3	3	•		}	}					Sp	ecial .	Instru	ctions/
Contract/Purchase Order/Quote No.				N	fatri.	r				taine serve				Nitrate Nitrit	Phesphera												Receip
Sample I.D. No and Description (Containers for each sample may be combined on one line)	Date	Time	NA.	Aquecus	Sed	Sou/	Unoras	HZSOA	HNO3	HC,	NaOH	Zn4¢ NaOH		N'th	NH3												
Influent	9-2-08	1300		X			X							1													
Outfall	9-2-08	1300		X			X	<u>'L</u>			L			1													
Influent	9-2-08	1300	_	X				X		_	<u> </u>				1		1	_	<u> </u>								
Outfall	9-2-08	1300		X				X	_						1												
					_		_	L			_				\perp		_						\perp	ļ			
								L															\perp				
				· .													\perp		<u>.</u>								
									-														\top				
															T	7							7				
						\top								_	7				T		7	1	1				
Possible Hazard Identification	<u> </u>		- I	_ '		posal		_	<u> </u>		<u> </u>								Щ.	/A fe	ee me	u ha s	95545	sed if samp	las ara	retaine.	
C 71007710001	Poison B	Unknow	7	_] Re	tum	To Clie	ent		Dispo			ab s (Spe			ve Fo	r		. Moi	nths	long	er th	an 1 m	onth)				
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Days	ays 🗌 21 Days	s 🗆 on	her						<i>,</i>	יוטיושי	116111	SISPE	echy)					1									
1 Relinquished By		Date		_		ne		7	Rece	ived .	BX	1		1			7				 I			Date		Time	X
Gerald Wilhelm 2 Rollinguished By		9-2	-4	8		500	<u> </u>			K		[0	<u>\</u> -	1	<u>e</u>	<u>'~</u>	4	<u> </u>	Es	F/	WE	381	CA	3 SEX	108		193
2 Relinquished By		Date			111	ne		ا ح	Rece	ived i	ву Г		1							•				Date	ļ	Time	/
3 Relinquished By		Date			1777	ne		3	Rece	ived .	Ву		`	_			t			-				Date	 	Time	
Comments					J			<u>L</u>									<u> </u>							L		L	
V																											
DISTRIBUTION: WHITE - Returned to Client with Report,	CANARY - Stays v	with the San	nple,	PINE	(- Fi	eld Co	DУ								_												
3																											

ATTACHMENT 3

WATER SAMPLING RESULTS – SEPTEMBER 16, 2008 NEASE CHEMICAL SITE, SALEM, OHIO

TESTAMERICA LABORATORIES, INC.

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user. ______ Rutgers Organics Corporation PAGE 1 Lot #: A8I170124 Date Reported: 10/27/08 SALEM, OHIO SITE REPORTING ANALYTICAL __ METHOD RESULT LIMIT UNITS PARAMETER Client Sample ID: INFLUENT Sample #: 001 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: WATER Inorganic Analysis Reviewed pH Aqueous 7.0 No Units SW846 9040B mg/L MCAWW 160.1 mg/L MCAWW 160.2
 440
 10

 21
 4.0
 Filterable Residue (TDS) Non-Filterable Residue (TSS) Client Sample ID: LGAC 2-3 Sample #: 002 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: WATER Volatile Organics by GC/MS Reviewed ug/L SW846 8260B
ug/L SW846 8260B 10 ND ug/L SW846 8260B Acetone 1.0 Benzene ND ND 1.0 Bromobenzene ND 1.0 Bromochloromethane 1.0 Bromodichloromethane ND 1.0 Bromoform ND Bromomethane ND 1.0 10 ND 2-Butanone n-Butylbenzene ND 1.0 sec-Butylbenzene ND 1.0 tert-Butylbenzene ND 1.0 1.0 ND Carbon tetrachloride 1.0 1.0 1.0 1.0 Chlorobenzene ND Dibromochloromethane ND Chloroethane ND Chloroform ND ND Chloromethane ND 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene ND 1.0 1,2-Dibromoethane ND ND Dibromomethane 1.0 0.26 J 1.0 1,2-Dichlorobenzene 1,3-Dichlorobenzene
1,4-Dichlorobenzene ND 1.0 ND 1.0 ug/L SW846 8260B ug/L ug/L ug/L SW846 8260B Dichlorodifluoromethane ND 1.0 1.0 SW846 8260B 1,1-Dichloroethane ND

(Continued on next page)

1.0

SW846 8260B

ND

1,2-Dichloroethane

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

t #: A8I170124	ers Organics SALEM, O		Date Reported:	PAGE 10/27/08	
		REPORTIN	IG	ANALYTICAL	
PARAMETER	RESULT	LIMIT	UNITS	METHOD	
Clicat Cample ID. ICAC 2-3					
Client Sample ID: LGAC 2-3 Sample #: 002 Date Sampled:	09/16/08 13:	:00 Date R	Received: 09	9/17/08 Matrix:	WATER
Volatile Organics by GC/MS					Reviewed
cis-1,2-Dichloroethene	0.37 J	1.0	ug/L	SW846 8260B	
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B	
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B	
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B	
Ethylbenzene	ND	1.0	ug/L	SW846 8260B	
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B	
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B	
Methylene chloride	ND	1.0	ug/L	SW846 8260B	
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B	
Styrene	ND	1.0	ug/L	SW846 8260B	
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B	
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B	
Toluene	ND	1.0	ug/L	SW846 8260B	
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B	
Trichloroethene	ND	1.0	ug/L	SW846 8260B	
Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B	
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B	
1,3,5-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B	
Vinyl chloride	ND	1.0	ug/L	SW846 8260B	
m-Xylene & p-Xylene	ND	2.0	ug/L	SW846 8260B	
o-Xylene	ND	1.0	ug/L	SW846 8260B	
J Estimated result Result is less than RL.					
Inorganic Analysis					Reviewed
pH Aqueous	8.0		No Units	SW846 9040B	
Filterable Residue (TDS)	440	10	mg/L	MCAWW 160.1	
Non-Filterable	ND	4.0	mg/L	MCAWW 160.2	
- 13 (-		

(Continued on next page)

Residue (TSS)

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user. ______ Rutgers Organics Corporation PAGE SALEM, OHIO SITE Date Reported: 10/27/08 Lot #: A8I170124 REPORTING ANALYTICAL RESULT LIMIT UNITS METHOD Client Sample ID: OUTFALL Sample #: 003 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: WATER Mercury in Liquid Waste (Manual Cold-Vapor) Reviewed 0.00020 mg/L SW846 7470A ND Mercury

 ND
 0.0010
 mg/L

 ND
 0.050
 mg/L

 0.0027
 0.0010
 mg/L

 ND
 0.0010
 mg/L

 ND
 0.0020
 mg/L

 ND
 0.0020
 mg/L

 ND
 0.0020
 mg/L

 0.0025
 0.0020
 mg/L

 ND
 0.0010
 mg/L

 ND
 0.0020
 mg/L

 ND
 0.0010
 mg/L

 ND
 0.0010
 mg/L

 ND
 0.0010
 mg/L

 ND
 0.0010
 mg/L

 ND
 0.010
 mg/L

 - ICP-MS (6020) Reviewed SW846 6020 Silver SW846 6020 SW846 6020 SW846 6020 Aluminum Arsenic Beryllium SW846 6020 Cadmium Chromium Copper Iron Nickel Lead Antimony SW846 6020 Thallium Zinc SW846 6020 Volatile Organics by GC/MS Reviewed ug/L SW846 8260B Acetone 1.1 J 10 SW846 8260B Benzene ND 1.0 ИD 1.0 Bromobenzene SW846 8260B SW846 8260B Bromochloromethane ND 1.0 Bromodichloromethane SW846 8260B ND 1.0 SW846 8260B Bromoform ND 1.0 SW846 8260B SW846 8260B 1.0 Bromomethane ND 10 2-Butanone ND ИD 1.0 SW846 8260B n-Butylbenzene ИD 1.0 sec-Butylbenzene ug/L SW846 8260B SW846 8260B tert-Butylbenzene ND 1.0 ug/L Carbon tetrachloride ND 1.0 ug/L SW846 8260B SW846 8260B Chlorobenzene ND 1.0 ug/L SW846 8260B Dibromochloromethane ND 1.0 ug/L ug/L ug/L ug/L ug/L Chloroethane ND 1.0 SW846 8260B 1.0 Chloroform ND SW846 8260B

(Continued on next page)

1.0

1.0

SW846 8260B

SW846 8260B

ND

ND

Chloromethane

2-Chlorotoluene

The results shown below may still require additional laboratory review and are subject to

Rutg	ers Organics SALEM, OH	_	n -	Date Reported:	PAGE 10/27/0	
PARAMETER	RESULT	REPORTING LIMIT UNITS		ANALYTICAL METHOD		
TANAHUTUK			011110	THI HOD		
Client Sample ID: OUTFALL						
Sample #: 003 Date Sampled:	09/16/08 13:	00 Date Red	ceived: ()9/17/08 Matrix:	WATER	
Volatile Organics by GC/MS					Reviewed	
4-Chlorotoluene	ND	1.0	ug/L	SW846 8260B		
1,2-Dibromoethane	ND	1.0	${\tt ug/L}$	SW846 8260B		
Dibromomethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dichlorobenzene	0.25 J	1.0	ug/L	SW846 8260B		
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B		
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B		
Dichlorodifluoromethane	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B		
cis-1,2-Dichloroethene	0.35 J	1.0	ug/L	SW846 8260B		
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B		
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
1,3-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
2,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B		
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
1,1-Dichloropropene	ND	1.0	ug/L	SW846 8260B		
Ethylbenzene	ND	1.0	ug/L	SW846 8260B		
Isopropylbenzene	ND	1.0	ug/L	SW846 8260B		
p-Isopropyltoluene	ND	1.0	ug/L	SW846 8260B		
Methylene chloride	ND	1.0	ug/L	SW846 8260B		
n-Propylbenzene	ND	1.0	ug/L	SW846 8260B		
Styrene	ND	1.0	ug/L	SW846 8260B		
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L ug/L	SW846 8260B		
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L ug/L	SW846 8260B		
Tetrachloroethene	ND	1.0	ug/L ug/L	SW846 8260B		
Toluene		1.0	-	SW846 8260B		
1,1,1-Trichloroethane	ND ND	1.0	ug/L ug/L			
			_	SW846 8260B		
1,1,2-Trichloroethane Trichloroethene	ND	1.0	ug/L	SW846 8260B		
Trichloroethene Trichlorofluoromethane	ND	1.0	ug/L	SW846 8260B		
	ND	1.0	ug/L	SW846 8260B		
1,2,3-Trichloropropane	ND	1.0	ug/L	SW846 8260B		
1,2,4-Trimethylbenzene	ND	1.0	ug/L	SW846 8260B		
1,3,5-Trimethylbenzene	ND	1.0 1.0	ug/L ug/L	SW846 8260B SW846 8260B		
Vinyl chloride	ND					

(Continued on next page)

TESTAMERICA LABORATORIES, INC.

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

______ PAGE Rutgers Organics Corporation Lot #: A8I170124 SALEM, OHIO SITE Date Reported: 10/27/08 REPORTING ANALYTICAL LIMIT UNITS METHOD RESULT PARAMETER Client Sample ID: OUTFALL Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: WATER Sample #: 003 Volatile Organics by GC/MS Reviewed 1.0 ug/L o-Xylene ND SW846 8260B J Estimated result Result is less than RL Semivolatile Organic Compounds by GC/MS In Review Anthracene 10 ug/L SW846 8270C Benzo(a)anthracene ND 10 ug/L SW846 8270C ug/L ND SW846 8270C Benzo(b) fluoranthene 10 SW846 8270C 10 ug/L Benzo(k)fluoranthene ND SW846 8270C SW846 8270C ug/L Benzo(ghi)perylene ND 10 ug/L ND 10 Benzo(a)pyrene 10 SW846 8270C ND Butyl benzyl phthalate ug/L 10 Chrysene ND ug/L SW846 8270C 10 SW846 8270C Dibenz(a,h)anthracene ND ug/L 10 SW846 8270C Di-n-butyl phthalate ND ug/L 10 SW846 8270C 1,2-Dichlorobenzene ug/L ND ND 1,3-Dichlorobenzene 10 ug/L SW846 8270C SW846 8270C 1,4-Dichlorobenzene ND 10 ug/L 10 SW846 8270C Dimethyl phthalate ND ug/L Fluorene ND 10 ug/L SW846 8270C Indeno(1,2,3-cd)pyrene ND 10 ug/L SW846 8270C 10 SW846 8270C 2-Methylnaphthalene ND ug/L ug/L SW846 8270C 10 4-Methylphenol ND SW846 8270C Naphthalene ND 10 ug/L ND SW846 8270C Phenanthrene 10 ug/L 10 Phenol ND ug/L SW846 8270C Pyrene ND 10 ug/L SW846 8270C 2.0 Phenyl sulfone ND ug/L SW846 8270C 10 3,4-Dichloronitrobenzene ND ug/L SW846 8270C

(Continued on next page)

0.10

ND

Reviewed

ug/L SW846 8081A

Organochlorine Pesticides

Methoxychlor

The results shown below may still require additional laboratory review and are subject to

change. Actions taken based on these results are the responsibility of the data user.

Rutgers Organics Corporation

PAGE 6

Lot #: A8I170124

SALEM, OHIO SITE

Date Reported: 10/27/08

		REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD

Client Sample ID: OUTFALL

Sample #: 003 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: WATER

Inorganic Analysis				Revlewed
Biochemical Oxygen Demand	ND	2	mg/L	MCAWW 405.1
Weak Acid Dissociable CN	ND	0.010	mg/L	SM18 4500-CN-I
Chemical Oxygen Demand	ND	20	mg/L	MCAWW 410.4
N-Hexane Extractable	ND	5.0	mg/L	CFR136A 1664A HEM
Material (1664A)				
Ammonıa Nitrogen	ND	2.0	mg/L	MCAWW 350.2
pH Aqueous	8.0		No Units	SW846 9040B
Filterable Residue (TDS)	460	10	mg/L	MCAWW 160.1
Total Organic Carbon	ND	1	mg/L	SW846 9060
Non-Filterable	ND	4.0	mg/L	MCAWW 160.2
Residue (TSS)				

Client Sample ID: TRIP BLANK

Sample #: 004 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: WATER

Volatile Organics by GC/MS					Reviewed
Acetone	2.3 J	10	ug/L	SW846 8260B	
Benzene	ND	1.0	ug/L	SW846 8260B	
Bromobenzene	ND	1.0	ug/L	SW846 8260B	
Bromochloromethane	ND	1.0	ug/L	SW846 8260B	
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B	
Bromoform	ND	1.0	ug/L	SW846 8260B	
Bromomethane	ND	1.0	ug/L	SW846 8260B	
2-Butanone	ND	10	ug/L	SW846 8260B	
n-Butylbenzene	ND	1.0	ug/L	SW846 8260B	
sec-Butylbenzene	ND	1.0	ug/L	SW846 8260B	
tert-Butylbenzene	ND	1.0	ug/L	SW846 8260B	
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B	
Chlorobenzene	ND	1.0	ug/L	SW846 8260B	
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B	
Chloroethane	ND	1.0	ug/L	SW846 8260B	
Chloroform	ND	1.0	ug/L	SW846 8260B	
Chloromethane	ND	1.0	ug/L	SW846 8260B	
2-Chlorotoluene	ND	1.0	ug/L	SW846 8260B	
4-Chlorotoluene	ND .	1.0	ug/L	SW846 8260B	

(Continued on next page)

o-Xylene

TESTAMERICA LABORATORIES, INC. PRELIMINARY DATA SUMMARY

~______ The results shown below may still require additional laboratory review and are subject to

change. Actions taken based on these results are the responsibility of the data user.

_____ Rutgers Organics Corporation PAGE Lot #: A8I170124 SALEM, OHIO SITE Date Reported: 10/27/08 REPORTING ANALYTICAL RESULT LIMIT UNITS METHOD Client Sample ID: TRIP BLANK Sample #: 004 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: WATER Volatile Organics by GC/MS Reviewed 1,2-Dibromoethane 1.0

 ug/L
 SW846
 8260B

 ug/L SW846 8260B ND ND 1.0 SW846 8260B Dibromomethane ug/L 1,2-Dichlorobenzene ND 1.0 ND 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene ND ND Dichlorodifluoromethane 1,1-Dichloroethane 1.0 ND 1.0 1,2-Dichloroethane ND cis-1,2-Dichloroethene ND trans-1,2-Dichloroethene ND 1.0 ND 1.0 trans-1,2-Dichiological 1,1-Dichloroethene 1.0 1.0 ND 1.0 ND 1,3~Dichloropropane 1.0 ND 1.0 2,2~Dichloropropane ND cis-1,3-Dichloropropene ND 1.0 trans-1,3-Dichloropropene ND 1.0 ND 1.0 1,1-Dichloropropene 1.0 ND Ethylbenzene Isopropylbenzene ND 1.0 1.0 ND p-Isopropyltoluene ND 1.0 Methylene chloride ND 1.0 n-Propylbenzene ND 1.0 Styrene -1,1,1,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND 1.0 1.0 1.0 Tetrachloroethene ND 1.0 Toluene ND ND 1,1,1-Trichloroethane 1.0 1,1,2-Trichloroethane ND 1.0 Trichloroethene ND 1.0 1.0 ug/L SW846 8260B
2.0 ug/L SW846 8260B
1.0 ug/L SW846 8260B Trichlorofluoromethane 1.4 ND 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene ND ND 1,3,5-Trimethylbenzene ND Vinyl chloride m-Xylene & p-Xylene ND

(Continued on next page)

ND

The results shown below may still require additional laboratory review and are subject to

change. Actions taken based on these results are the responsibility of the data user.

Rutgers Organics Corporation

PAGE 8

Lot #: A8I170124

SALEM, OHIO SITE

Date Reported: 10/27/08

PARAMETER RESULT LIMIT UNITS METHOD

Client Sample ID: TRIP BLANK

Sample #: 004 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: WATER

Volatile Organics by GC/MS

Reviewed

J Estimated result Result is less than RL

Client Sample ID: AGAC 1-2

Sample #: 005 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: AIR

Volatile Organics by TO14 A	(Low Level)			Reviewed
Benzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Bromodichloromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Bromoform	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Carbon tetrachloride	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Chlorobenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Dibromochloromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Chloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Chloroform	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,2-Dibromoethane (EDB)	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Dibromomethane	ND	1.0	ppb(v/v)	EPA-2 TO-14A
1,2-Dichlorobenzene	1.0	0.50	ppb(▼/▼)	EPA-2 TO-14A
1,3-Dichlorobenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,4-Dichlorobenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Dichlorodifluoromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,1-Dichloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,2-Dichloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
cis-1,2-Dichloroethene	1.1	0.50	ppb(v/v)	EPA-2 TO-14A
trans-1,2-Dichloroethene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,1-Dichloroethene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,2-Dichloropropane	ИD	0.50	ppb(v/v)	EPA-2 TO-14A
cis-1,3-Dichloropropene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
trans-1,3-Dichloropropene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Ethylbenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Cumene	ND	1.0	ppb(v/v)	EPA-2 TO-14A
n-Propylbenzene	ND	1.0	ppb(v/v)	EPA-2 TO-14A
Styrene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,1,2,2-Tetrachloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Tetrachloroethene	1.0	0.50	ppb(√√)	EPA-2 TO-14A
Toluene	0.59	0.50	ppb(v/v)	EPA-2 TO-14A

(Continued on next page)

______ The results shown below may still require additional laboratory review and are subject to

change. Actions taken based on these results are the responsibility of the data user. ______

Rutgers Organics Corporation

PAGE 9

Lot #: A8I170124

SALEM, OHIO SITE

Date Reported: 10/27/08

		REPORTING		ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD

Client Sample ID: AGAC 1-2

Sample #: 005 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: AIR

Volatile Organics by TO14 A	(Low Level)			Reviewed	
1,1,1-Trichloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
1,1,2-Trichloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Trichloroethene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Trichlorofluoromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
1,2,3-Trichloropropane	ND	1.2	ppb(v/v)	EPA-2 TO-14A	
1,3,5-Trimethylbenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Vinyl chloride	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
m-Xylene & p-Xylene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
o-Xylene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	

Client Sample ID: AGAC-F

Sample #: 006 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: AIR

Volatile Organics by TO14 A	(Low Level)			Reviewed
Benzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Bromodichloromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Bromoform	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Carbon tetrachloride	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Chlorobenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Dibromochloromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Chloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Chloroform	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,2-Dibromoethane (EDB)	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Dibromomethane	ND	1.0	ppb(v/v)	EPA-2 TO-14A
1,2-Dichlorobenzene	5.0	0.50	ppb(v/v)	EPA-2 TO-14A
1,3-Dichlorobenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,4-Dichlorobenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
Dichlorodifluoromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,1-Dichloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,2-Dichloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
cis-1,2-Dichloroethene	1.1	0.50	ppb(v/v)	EPA-2 TO-14A
trans-1,2-Dichloroethene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,1-Dichloroethene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
1,2-Dichloropropane	ND	0.50	ppb(v/v)	EPA-2 TO-14A
cis-1,3-Dichloropropene	ND	0.50	ppb(v/v)	EPA-2 TO-14A
trans-1,3-Dichloropropene	ND	0.50	ppb(v/v)	EPA-2 TO-14A

(Continued on next page)

TESTAMERICA LABORATORIES, INC.

PRELIMINARY DATA SUMMARY

The results shown below may still require additional laboratory review and are subject to change. Actions taken based on these results are the responsibility of the data user.

Rutgers Organics Corporation

PAGE

Lot #: A8I170124

SALEM, OHIO SITE

Date Reported: 10/27/08

REPORTING ANALYTICAL PARAMETER RESULT LIMIT UNITS METHOD

Client Sample ID: AGAC-F

Sample #: 006 Date Sampled: 09/16/08 13:00 Date Received: 09/17/08 Matrix: AIR

Volatile Organics by TO14 A (Lo	w Level)				Reviewed
Ethylbenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Cumene	ND	1.0	ppb(v/v)	EPA-2 TO-14A	
n-Propylbenzene	ND	1.0	ppb(v/v)	EPA-2 TO-14A	
Styrene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
1,1,2,2-Tetrachloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Tetrachloroethene	1.0	0.50	ppb(v/v)	EPA-2 TO-14A	
Toluene	0.58	0.50	ppb(v/v)	EPA-2 TO-14A	ı
1,1,1-Trichloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
1,1,2-Trichloroethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Trichloroethene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Trichlorofluoromethane	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
1,2,3-Trichloropropane	ND	1.2	ppb(v/v)	EPA-2 TO-14A	
1,3,5-Trimethylbenzene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
Vinyl chloride	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
m-Xylene & p-Xylene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	
o-Xylene	ND	0.50	ppb(v/v)	EPA-2 TO-14A	

ATTACHMENT 4

TWO ACUTE TOXICITY EVALUATIONS
AUGUST 19 THROUGH AUGUST 26, 2008
NEASE CHEMICAL SITE, SALEM, OHIO

RESULTS OF TWO ACUTE TOXICITY EVALUATIONS OF RUTGERS ORGANICS CORPORATION, SALEM SITE LAGOON WATER TREATMENT PLANT FINAL EFFLUENT

AAT JOB # 51 - 01 - 86

August 19 - August 26, 2008

Report Prepared for:

Rutgers Organics Corporation 201 Struble Road State College, Pennsylvania 16801

Report Prepared by:

AMERICAN AQUATIC TESTING, INC. 890 NORTH GRAHAM STREET ALLENTOWN, PENNSYLVANIA 18109

INTRODUCTION

A set of two static acute toxicity tests were conducted with larval fathead minnows, *Pimephales promelas* (*P. promelas*) and the freshwater cladoceran, *Ceriodaphnia dubia* (*C. dubia*) to determine the relative toxicity of final effluent from the Rutgers Organics Corporation Lagoon Water Treatment Plant, Salem, Ohio. The 96-hour static fathead acute toxicity test and the 48-hour static *C. dubia* acute toxicity tests were conducted from August 19 through August 23 2008. The toxicity evaluations were conducted by American Aquatic Testing, Inc., Allentown, Pennsylvania.

All tests were performed according to procedures outlined in Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms, 4th Edition (EPA/600/4-90/027F) and Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October 1991.

MATERIALS

TEST ORGANSIMS

Fathead Minnow, Pimephales promelas

Larval fathead minnows used in acute testing were obtained from in-house cultures maintained by ABS,Inc.. Test age organisms are maintained in shallow depth basins containing 10L of moderately hard reconstituted water and are fed newly hatched *Artemia* (brine shrimp) nauplii twice a day up until test initiation. The test organisms were 01 day old at test initiation. No acclimation of these test organisms was required as they were raised in moderately hard reconstituted water, which was used for testing.

Freshwater Cladoceran, Ceriodaphnia dubia

Cladoceran neonates, C. dubia were obtained from AAT, Inc.'s in-house cultures. Cultures for generating test age (<24 hours old) neonates are maintained as single cultures in 30 mL soufflé cups containing 15 mL of moderately hard reconstituted water. These adults are transferred daily into fresh culture water and are fed a combination of a unicellular green alga (Selenastrum capricornutum) and a yeast/Cerophyll/trout chow (YCT) suspension. Broods released during a five hour period were pooled and used to initiate the acute toxicity test. No acclimation of these test organisms was required as they were raised in moderately hard reconstituted water, which was used for testing. Neonates were released between 0800 and 1300 of August 19, 2008.

DILUTION WATER

Moderately hard reconstituted water was prepared in accordance to procedures outlined in EPA/600/4-90/027F and was used as dilution/control water for the toxicity tests. Deionized water (Specialty Filtration Products) and reagent grade chemicals were used to achieve the following concentrations: 96 mg/L of NaHCO₃, 60.0 mg/L of MgSO₄ and 4.0 mg/L of KCl and 60.0mg/L of CaSO₄ 2H₂O.

TEST MATERIAL

The material tested was final effluent collected by Howells and Baird personnel with a grab sampler placed at the outfall. One grab sample was collected for each of the two acute toxicity tests. The sample, collected August 18, 2008, was shipped overnight to AAT, Inc. in a cooler containing ice and was used to initiate testing on August 19, 2008. A Chain-of-Custody accompanied the sample. Tests were initiated prior to the expiration of the 36-hour holding time.

METHODS

P. promelas larvae (1 day old) were exposed to the effluent sample for 96 hours under static, non-renewal conditions. Test organisms were exposed in groups of 10 in 1 L glass beakers containing 500 mL of test solution with two replicates per concentration (20 organisms per concentration). The test organisms were fed prior to test initiation and at 48 hours.

C. dubia neonates (<24 hours old) were exposed to the effluent sample for 48 hours under static nonrenewal conditions. Test organisms were exposed in groups of five in 30 mL soufflé cups containing 15 mL of test solution with four replicates per concentration (20 organisms per concentration). The test organisms were not fed during the test exposure.

Both sets of test chambers were placed in randomized positions in a temperature controlled environment maintained at 25 ± 1 ° C. The highest concentration used for exposure was 100 %. A 0.56 dilution schedule was used to prepare sample concentrations of 56%, 32%, 18% and 10%, by volume. A control sample consisting of 100 % dilution water was also tested.

Surviving test organisms were counted daily. Dead test organisms and debris were removed daily at this time. Temperature was measured daily in a surrogate replicate placed alongside the test chambers. Dissolved oxygen, pH and conductivity were measured in one replicate chamber at each concentration at the beginning and end of the test exposure. Alkalimity and hardness were measured in the control and the 100% concentration at the beginning of the test exposure. The lighting regime was 16 hours light, 08 hours dark.

RESULTS

FATHEAD MINNOW 96-HOUR ACUTE TEST RESULTS

As a result of less than 50 % mortality in any test concentration during the exposure period the acute data was evaluated visually. Therefore, the 96-hour LC_{50} is > 100%. This result yields an Acute Toxic Unit; $TUa~(100\%/LC_{50})$ of 1.0.

CERIODAPHNIA DUBIA 48-HOUR ACUTE TEST RESULTS

As a result of less than 50 % mortality in any test concentration during the exposure period the acute data was evaluated visually. Therefore, the 48-hour LC_{50} is > 100%. This result yields an Acute Toxic Unit; $TUa~(100\%/LC_{50})$ of 1.0.

Table I.

Fathead Minnow Mortality Data

CLIENT:

Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST:

96-hour Definitive Acute Toxicity Test

DATE:

August 19 - August 23, 2008

			Cumulative	number of o	organisms at	tected at	
Sample	%	# of	24 hr	48 hr -	72 hr	96 hr	%
Type	Effluent	Organisms					Mortality*
	0	20	0	0	0	0	0
	10	20	0	0	0	0	0
Final	18	20	0	0	0	0	0
Effluent	32	20	0	0	0	0	0
	56	20	0	0	0	0	0
	100	20	0	0	0	0	0

^{*} Cumulative Percent Mortality at 96 hours

Table II.

Fathead Minnow Physical/Chemical Measurements

CLIENT:

Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST:

96-hour Definitive Acute Toxicity Test

DATE:

August 19 – August 23, 2008

	% Effluent by Volume					
Time	0	10	18	32	56	100
0 hour						
Conduct. µmhos	294	361	413	497	663	947
D.O. ppm	8.0	8.0	7.9	7.8	7.7	7.3
Temp. °C A	25.0	25.0	25.0	25.0	25.0	25.0
] B	25.0	25.0	25.0	25.0	25.0	25.0
pH Std .units	8.2	8.2	8.1	8.1	8.0	7.9
Alkalinity mg/L	70	ì		l		180
Hardness mg/L	90					430
				,		
24 hours A	25.0	25.0	25.0	25.0	25.0	25.0
Temp. °C B	25.0	25.0	25.0	25.0	25.0	25.0
48 hours A	24.5	24.5	24.5	24.5	24.5	24.5
Temp. °C B	24.5	24.5	24.5	24.5	24.5	24.5
72 hours A	25.0	25.0	25.0	25.0	25.0	25.0
Temp. °C B	25.0	25.0	25.0	25.0	25.0	25.0
96 hours						
Conduct. µmhos	317	379	432	530	685	934
D.O. ppm	7.3	7.3	7.2	7.2	7.3	7.2
pH Std .units	7.7	7.7	7.7	7.7	8.1	8.2
Temp. °C A	25.5	25.5	25.5	25.5	25.5	25.5
B	25.5	25.5	25.5	25.5	25.5	25.5

Table I.

Ceriodaphnia dubia Mortality Data

CLIENT:

Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST:

48 hour Definitive Acute Toxicity Test

DATE:

August 19 - August 21, 2008 - - -

		affected at	

Sample Type	%	· # of			%
Туре	Effluent	Organisms	24 hours	48 hours	Mortality*
	0	20	0	0	0
	10	20	0	0	0
Final	18	20	0	0	0
Effluent	32	20	0	0	0
	56	20	0 ·	0	0
	100	20	00	11	5

^{*} Cumulative Percent Mortality at 48 hours

Table II.

Ceriodaphnia dubia Physical/Chemical Measurements

CLIENT:

Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST:

48 hour Definitive Acute Toxicity Test

DATE:

August 19 - August 21, 2008

			% Effluent	by Volume		
Time	0	10	18	32	56	100
0 hour						
Conduct. µmhos	294	361	413	497	663	947
D.O. ppm	8.0	8.0	7.9	7.8	7.7	7.3
Temp. °C	25.0	25.0	25.0	25.0	25.0	25.0
pH Std .units	8.2	8.2	8.1	8.1	8.0	7.9
Alkalinity mg/L	70					180
Hardness mg/L	90			_		430
24 hours						
Temp. °C	25.0	25.0	25.0	25.0	25.0	25.0
48 hours						
Conduct. µmhos	327	392	444	531	689	971
D.O. ppm	7.9	7.9	7.9	7.9	7.9	8.0
pH Std .units	7.8	7.8	7.8	7.8	8.1	8.1
Temp. °C	25.0	25.0	25.0	25.0	25.0	25.0

APPENDIX I

RAW DATA

August 19 - August 23, 2008

RESULTS OF TWO ACUTE TOXICITY EVALUATIONS OF RUTGERS ORGANICS CORPORATION, SALEM SITE LAGOON WATER TREATMENT PLANT FINAL EFFLUENT

Freshwater Acute Test

American Aquatic Testing, Inc.

Job #: 51-01-86

Species: P. promolas

Dilution Water: EPA Mod. Hard

Start Date/Time: 8-19-68 1430

End Date/Time: 8-23-08 (43)

Test Type: 96hr. Static Non-reached

Concentration Rep.			Li	ve Cou	nt			Tem	perature) (C)	
		0 hr.	24 hr.	48 hr.	72 hr.	96 hr.	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.
Control	Α	[0]	10	10	10	10	25.0	25.0	24.5	25.0	25.2
	В	0	10	10	10	10	25.0	25.0	245	25,0	25.5
10%	Α	10	10	10	10	10	25.0	25.0	24.5	25.0	25.5
	В	(0)	10	10	10	10	25.0	25.0	24.5	2500	25.5
18%	Α	lo	10	10	10	10	25.0	25.0	24.5	25.0	25.5
	В	10	10	10	10	10	25.0	25.0	24.5	2500	25.5
32%	Α	10	10	10	10	10	25.0	25.0	24.5	25.0	25.5
}	В	IU	10	10	10	10	25.0	25.0	24.5	25,0	25.5
56%	Α	10	10	10	10	10	25.0	25.0	24.5	25.0	25.5
	В	Ŏ	10	10	10	10	25.0	25.0	24.5	22.0	25.5
100%	Α	[0	10	10	10	10	25.0	25.0	24.5	25.0	25,5
	В	(0)	10	10	10	10	25.0	250	24.5	25,0	25.5
Initials			TAP	TAP	TOY	TAP	MAP	THE	700	1787	TOP
Date		15/19	5/20	5/21	5/22	5/23	8/19	8/20	8/2-1	8/22	8/23

Concentration	р	Н	D.O. (mg/L)		Cond. (umhos)
	0 hr.	96 hr.	0 hr.	96 hr.	0 hr.	96 hr.
Control	8.2	7.7	8.0	7-3	294	317
10%	8.2	7.7	8.6	7.3	361	379
18%	8.1	7.7	7.9	7,2	413	432
32%	8.1	7.7	7.8	7.2	497	530
56%	8.0	8.1	7.7	7.3	663	685
100%	7.9	8.2	7.3	7.2	947	934
Initials	MP	The	MAP	TRO	MP	TRO
Date	8/19	8/23	819	8/23	8/19	8/23

Concentration	Alkalinity (mg/L)	Hardness (mg/L)
Control	70	90,
100%	180	430
Initials	Will	V QU
Date	819	'šla

Observations:		-	
		· · · · · · · · · · · · · · · · · · ·	

Freshwater Acute Test

American Aquatic Testing, Inc.

Job #: 51-01-86	Start Date/Time: 8-19-03 /600
Species: C. J. Sia	End Date/Time: 8,21-08 /600
Dilution Water: EPA Mod. Hard	Test Type: 48hr. SNR

Conc.	Tem	perature	(C)
%	0 hr.	24 hr.	48 hr.
Control	25.0	25.0	25.0
10	25.0	25-0	25.0
18	25.0	25-0	25.0
32	25.0	25.0	95.0
56	25.0	25.0	254
100	25.0	25.0	25-0
Conc.	рН	(Stand ur	nits)
%	0 hr.		48 hr.
Control	8.2]	7.8
10	8.2		7.8
18	8.1		7.8
32	8.1		7.3
56	8.0		8.1
100	7.9	<u> </u>	8.1
Conc.		ed Oxyge	n (mg/L)
Control	8.0	1	7.9
10	8.0	_	7,9
18	7.9]	7.9
32	7.8		7.9
56	7.7		7.9
100	7.3	<u> </u>	8,0
Conc.		luctivity (u	mhos)
Control	294		327
10	361		392
18	413	1	444
32	497	_	531
56	663	1	689
100	747	<u> </u>	971
Initials	MLP	TRO	700
Date	8 19	8/20	8/21

Conc.	Rep.	l i	ve Coun	t
%	p.	0 hr	24 hr.	48 hr.
	^	<u> </u>		
0			5 S	
Control	В	>	<u> </u>	<u> </u>
	A B C D	5		<u> </u>
=======================================		5		
	Α	5	5	5
10	В	5	5	5
	С	5	5	5
	A B C D	5	5	5
	Α	5	5	5
18	B C D	5	5	5
1	С	5	5	5
	D	5	5	5
	A	5	5	5
32	B C D	5	5	5
	С	5	5	5
	D	5	5	5
		5	5	5
56	В	5	5	\$
	С	5	5	5
	D	5	5	5
	Α	5	5	5
100	В	5	5	5
	A B C D D	0 hr. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5	\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
		I (5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Initial	s	700	780	TBP 8/21
Date		700 8/19	8/20	8/21

Observations:			
_	-		

Conc.	Alkalinity	Hardness
Control	70	90
100%	180	430
Initials	VOL	YOU
Date	Sla	819

APPENDIX II OHIO EPA NPDES BIOMONITORING REPORT FORM

Date Created: 04/13/98Last Revised: 04/13/98 Page <u>1</u> of <u>6</u>

OHIO EPA NPDES BIOMONITORING REPORT FORM

GENERAL INFORMATION

1. Facility Name: Rutgers Organics Corporation

Reporting Date: 30 May 2008

2. Address:

1224 Benton Road
Salem, Ohio 44460
Substantive

- 3. Ohio EPA Permit Number: Discharge Criteria 4.Application (NPDES) No.
- 5. Facility Contact: Ralph Pearce 6. Phone No.: (800) 458-3434
- 7. Consultant/Testing Lab Name: American Aquatic testing, Inc.
- 8. Consultant/Lab Contact: Chris Nally 9. Phone No.: (610) 434-9015
- 10. Receiving Water(s) of Discharge: <u>Unnamed Tributary of the Middle Fork of Middle Creek</u>.
- 11. Outfall(s) Tested: 001

Average Daily Flows: on Day Sampled (gal/day)

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Signature Christopher J. Nally,

Date

OEPA Permit No.:			Page <u>2</u> of <u>6</u>
ACUTE TOX	ICITY TEST SAMPLI	NG DATA	
Sampling S	ummary for Acute :	Toxicity Tests	
Sampling Location & Description Final Effluent:	Sample Co Beginning MM/DD/Time 08/18/08 1230	Dllection Ending MM/DD/Time N/A	Weather/Receiving Stream Conditions
Outfall No.: 001	•		
Type (Grab/Composite): <u>Grab</u> Volume Collected: <u>1.0-gallon</u>			
Upstream Station:	N/A		
Waterbody:			
Station No.:			
Type (Grab/Composite):			
Volume Collected:			
Downstream Station (Near-field): Waterbody:	N/A		
Station No.:			
Type (Grab/Composite):			
Volume Collected:			
Additional Stations (If needed):	N/A		
Waterbody:			
Station No.:			
Type (Grab/Composite): Volume Collected:			
Waterbody:			
Station No.:			
Type (Grab/Composite):			

Volume Collected:

OEPA TABLI	Permit No.:TOXICITY TEST CONDIT	Page 3 of 6
	Summary of Toxicity Tes	st Conditions
1.	Test Species and Age:	Pimephales promelas - 1 days old
2::	Test Type and Duration:	==96-hour-Static Acute
3.	Test Dates:	August 19 - August 23, 2008
4.	Test Temperature (°C):	25.0°C ± 1.0°C
5.	Light Quality:	50-100 ft. candles
6.	Photoperiod:	16 hours light / 8 hours dark
7.	Feeding Regime:	None
8.	Size of Test Vessel:	600 mL
9.	Volume and Depth of Test Solutions:	500 mL / 92 mm
10.	No. of Test Organisms per Test Vessel:	Ten
11.	No. of Test Vessels per Test Solution:	Two
12.	Total No. of Test Organisms per Test Solution:	20
13.	Test Concentrations (as percent by volume effluent):	0, 10, 18, 32, 56, and 100%
14.	Renewal of Test Solutions:	None
15.	Dilution and Primary Control Water:	Moderately Hard Reconstituted Water
16.	Secondary Control Water:	N/A
17.	Aeration? Before/During Test:	None
18.	Endpoints Measured:	LC ₅₀ and TU _a

N/A

alternative diluent:

19. If secondary control water used as diluent due to toxicity in primary control water, indicate number of consecutive tests conducted with

OEPA Permit No.:						Page	4 of	6
TABLE	- - - ;	ACUTE TO	XICITY T	EST RESU	LTS			
Results of aConducted 08/19 (mm/c	(genus)_	/23/08	(specie Using Ef	s)			te Toxic: 001 (number	·
Test Solutions		tive Perc			24-Hr	LC ₅₀ Va (EC ₅₀ Va 48-Hr		96-Hr
Primary Control/ Dilution Water	<u> </u>		<u> </u>		>100% (<u>N/A</u>)	>100% (<u>N/A</u>)	>100% (<u>N/A</u>)	>100% (<u>N/A</u>)
Secondary Control	<u>N/A</u> ()	()	()	()		% Confi	dence Lindence Lindence Lindence Lindence Lindence T2-Hr	mits)
10 % Effluent	<u> </u>	0 (0)	(_0_)		LL N/A			_N/A
18_% Effluent	<u> </u>	(_0_)	(_0_)	<u>1</u> (_ <u>5</u> _)	UL N/A	N/A	N/A	_N/A
32 % Effluent	<u> </u>	(0)	(_0_)	<u> </u>	LL (<u>N/A</u>) UL (<u>N/A</u>)	()	()	()
56 % Effluent	(_0_)	<u>0</u> (<u>0</u>)	<u> </u>	<u>0</u> (<u>0</u>)	LL = Lower UL = Upper			
100% Effluent	(_0)	<u> </u>		<u> </u>	Calculated	TU _a Val	ue:	1.0
Near-Field Sample	_ <u>N/A</u> ()	()	()	()	Method(s) EC _{so} , and C	Confiden		Values:

a-cumulative percent affected is the total percentage of test organisms observed dead, immotile, exhibiting loss of equilibrium, or other defined endpoints (specify below):

OEPA Permit No.:	Page <u>5</u> of <u>6</u>
TOXICITY TEST CONDI	TIONS
TABLE	
Summary of Toxicity Te	est Conditions
1. Test Species and Age:	Ceriodaphnia dubia - <24-hours old
2. Test Type and Duration:	48-hour Static Acute
3. Test Dates:	August 19 - August 21, 2008
4. Test Temperature (°C):	25.0°C ± 1°C
5. Light Quality:	50-100 ft candles
6. Photoperiod:	16 hours light / 8 hours dark
7. Feeding Regime:	None
8. Size of Test Vessel:	30 mL
9. Volume and Depth of Test Solutions:	25 mL / 20 mL
10. No. of Test Organisms per Test Vessel:	Five
11. No. of Test Vessels per Test Solution:	Four
12. Total No. of Test Organisms per Test Solution:	20
13. Test Concentrations (as percent by volume effluent):	0, 10, 18, 32, 56, and 100%
14. Renewal of Test Solutions:	None
15. Dilution and Primary Control Water:	Moderately Hard Reconstituted Water
16. Secondary Control Water:	N/A
17. Aeration? Before/During Test:	None
18. Endpoints Measured:	LC _{so} and TU,

N/A

19. If secondary control water used as

alternative diluent:

diluent due to toxicity in primary control water, indicate number of consecutive tests conducted with

ATTACHMENT 5

TWO CHRONIC TOXICITY EVALUATIONS AUGUST 19 THROUGH AUGUST 26, 2008 NEASE CHEMICAL SITE, SALEM, OHIO

RESULTS OF TWO CHRONIC TOXICITY EVALUATIONS OF RUTGERS ORGANICS CORPORATION, SALEM SITE LAGOON WATER TREATMENT PLANT FINAL EFFLUENT

AAT JOB # 51 - 01 - 86

August 19 - August 26, 2008

Report Prepared for:

Rutgers Organics Corporation 201 Struble Road State College, Pennsylvania 16801

Report Prepared by:

AMERICAN AQUATIC TESTING, INC. 890 NORTH GRAHAM STREET ALLENTOWN, PENNSYLVANIA 18109

INTRODUCTION

A set of two 7-day daily renewal chronic toxicity tests were conducted with larval fathead minnows, *Pimephales promelas* (*P. promelas*) and the freshwater cladoceran, *Ceriodaphnia dubia* (*C. dubia*) to determine the relative toxicity of final effluent from the Rutgers Organics Corporation Lagoon Water Treatment Plant, Salem, Ohio. The larval fathead survival and growth chronic test and the *C. dubia* survival and reproduction test were conducted from August 19 through August 26, 2008. The toxicity evaluations were conducted by American Aquatic Testing, Inc., Allentown, Pennsylvania.

All tests were performed according to procedures outlined in Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms, 4th Edition (EPA/600/4-90/027F), Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Water to Freshwater Organisms, Third Edition (EPA/600/4-19/002) and Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October 1991.

MATERIALS

TEST ORGANSIMS

Fathead Minnow, Pimephales promelas

Larval fathead minnows used in chronic testing were obtained from cultures maintained in house at ABS, Inc. Test age organisms are maintained in shallow depth basins containing 10L of moderately hard reconstituted water and are fed newly hatched *Artemia* (brine shrimp) nauplii twice a day up until test initiation. The test organisms were < 48 hours old at test initiation. No acclimation of these test organisms was required as they were raised in moderately hard reconstituted water, which was used for testing.

Freshwater Cladoceran, Ceriodaphnia dubia

Cladoceran neonates, C. dubia were obtained from AAT, Inc.'s in-house cultures. Cultures for generating test age (<24 hours old) neonates are maintained as single cultures in 30 mL soufflé cups containing 15 mL of moderately hard reconstituted water. These adults are transferred daily into fresh culture water and are fed a combination of a unicellular green alga (Selenastrum capricornutum) and a yeast/Cerophyll/trout chow (YCT) suspension. Broods released during an 8-hour period were pooled and used to initiate the chronic toxicity test. No acclimation of these test organisms was required as they were raised in moderately hard reconstituted water, which was used for testing. Neonates were released between 0800 and 1300 of August 19, 2008.

DILUTION WATER

Moderately hard reconstituted water was prepared in accordance to procedures outlined in EPA/600/4-90/027F and was used as dilution/control water for the toxicity tests. Deionized water (Specialty Filtration Products) and reagent grade chemicals were used to achieve the following concentrations: 96 mg/L of NaHCO₃, 60.0 mg/L of MgSO₄ and 4.0 mg/L of KCl and 60.0mg/L of CaSO₄ 2H₂O.

TEST MATERIAL

The material tested was final effluent collected by Howells and Baird personnel with a grab sampler placed at the outfall. Three grab samples were collected for each of the two chronic toxicity tests.

The sample collected August 18, 2008 was used for the two chronic tests starting August 19, 2008 and for Day 2. The sample collected August 20, 2008 was used for renewal for Days 3 and 4. The sample collected August 22, 2008 was used for renewal for Days 5, 6 and 7. Chain-of-Custody forms accompanied the sample. Tests were initiated prior to the expiration of the 36-hour holding time.

METHODS

P promelas larvae (<48 hours old) were exposed to the effluent samples for seven days under static, daily renewal conditions. Test organisms were exposed in groups of 10 in 1 L glass beakers containing 500 mL of test solution with four replicates per concentration (40 organisms per concentration). The test organisms were fed twice each day with Artemia nauplii from test initiation until day six. The test organisms were not fed for the last 16 hours of the test. Daily observations were made during test material exchange and the numbers of live animals were recorded on the appropriate benchsheets. Any dead animals were removed from the test chambers.

The fathead larval test was terminated at the end of seven days. All live test organisms from each replicate chamber were counted, rinsed with deionized water and transferred as a group to a pre-weighed aluminum pan.. Pans with test organisms were dried at 105.0 °C for a minimum of six hours before being placed in a dessicator to cool. Each pan was weighed to the nearest 0.01 mg and the average test organism weight was determined by dividing by the original number of test organisms present (10).

C. dubia neonates (<24 hours old) were exposed to the effluent sample for six days under static, renewal conditions. Test organisms were exposed individually in 30 mL soufflé cups containing 15 mL of test solution with 10 replicates per concentration (10 organisms per concentration). At test material renewal, the test organisms were fed a combination of YCT (yeast, Cerophyll and trout-chow) and the green alga, S. capricornutum, daily during the test exposure. Daily observations of the number of live animals were made as well as the number of neonates produced and recorded on the appropriate benchsheets.

The C. dubia test was terminated at six days. The total number of neonates produced at each concentration was divided by the number of adult test organisms present to determine the average number of neonates produced

Both sets of test chambers were placed in randomized positions in a temperature controlled environment maintained at 25 ± 1 ° C for the duration of the test exposure period. The highest concentration used for exposure was 100 %. A 0.30 dilution schedule was used to prepare sample concentrations of 30%, 10%, 3% and 1%, by volume. A control sample consisting of 100 % dilution water was also tested.

RESULTS

FATHEAD MINNOW SURVIVAL AND GROWTH

An NOEC (No-Observable-Effect-Concentration) value of >100% for survival was produced. An NOEC value of >100% for growth was produced. As a result, the TUc for this test is 1.0 (100%/NOEC), for the growth endpoint.

CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION

An NOEC value of 100% for survival was produced. An NOEC value of 30% for reproduction was produced. As a result, the TUc for this test is 3.33 (30%/NOEC), for the reproduction endpoint.

Table I.

Fathead Minnow Physical/Chemical Measurements Summary

CLIENT:

Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST:

7-Day Chronic Toxicity Test

DATE:

August 19 – August 26, 2008

	-	Temp.	° C	pH	Std. Units	D.O.	ppm	Cond.	μmhos
ſ	CONC	_ Min	Max	Min	Max	Min	Max	Min	Max
	Control	24.5	25.0	7.3	8.2	7.3	8.1	289	291
- 1	1%	24.5 ~	- 25.0	7.3	8.2	- 7.4	- 8.0	ì	ĺ
1	3%	24.5	25.0	7.4	8.2	7.3	8.0]	
- [10%	24.5	25.0	7.4	8.2	7.3	8.0	1	
-	30%	24.5	25.0	7.6	8.2	7.2	7.8		1
Ĺ	100%	24.5	25.0	7.4	8.3	6.4	7.7	946	951

	<u>Alkalin</u>	ity mg/L	Hardnes	s mg/L	Chlorine mg/L		
SAMPLE	0 %	100 %	0 %	100 %	0%	100 %	
01	70	180	90 430		0	0.02	
_ 02	70	200	90	410	0	0.01	
03	70	160	90	360	0	0.01	

Table II.

Ceriodaphnia dubia Physical/Chemical Measurements Summary

CLIENT:

Rutgers Organics Corp., Salem Lagoon Water Treatment Plant

TEST:

7-Day Chronic Toxicity Test

DATE:

August 19 – August 25, 2008

	Temp.	°C	pН	Std. Units	D. O.	ppm	Cond.	μmhos
CONC.	Mın	Max	Min	Max	Mın	Max	Min	Max
Control	25.0	25.5	7.8	8.2	7.4	8.1	289	291
1%	25.0	25.5	7.8	8.2	7.4	8.0		
3%	25.0	25.5	7.8	8.2	7.4	8.0		
10%	25.0	25.5	7.8	8.2	7.5	8.0		
30%	25.0	25.5	77	8.3	7.3	8.0	•	l
100%	24.5	25.5	7.4	8 4	6.4	8.0	946	951

	Alkalin	ity mg/L	Hardnes	s mg/L	Chlorine mg/L		
SAMPLE	0 %	100 %	0 %	100 %	0%	100 %	
01	70	180	90	430	0	0 02	
02	70	200	90	410	0	0.01	
03	70	160	90	360	0	0.01	

APPENDIX I

RAW DATA

RESULTS OF TWO CHRONIC TOXICITY EVALUATIONS OF RUTGERS ORGANICS CORPORATION,
SALEM SITE LAGOON WATER TREATMENT PLANT
FINAL EFFLUENT

August 19 – August 26, 2008

Beginning Date & Time: 8-19-08 1710 Ending Date & Time: 8-05-08 1730 Project Number: 5/-01-86 Ceriodaphnia dubia, Survival and Reproduction Test American Aquatic Testing, Inc., Survival / Reproduction Data Conc. Replicate 2 3 4 Initals Day 5 6 7 8 9 10 O 0 0 0 0 0 9 1 В 0 0 Ø Ν 0 0 0 0 0 0 0 0 0 0 0 3 N В 0 0 6 0 7AP 2 4 4 4 4 2 4 4 N В 4 TAP Ð 92 8 2 10 2 12 w 8 10 ٧ 4 Z. 8-2 5 N В 2 2 10 143 16 3 16 3 14 3 10 20 8 3 В 3/8 N 7 N В 8 Ν В 34 3 14 12213 128 3 12813 2813 Tot N Tot B 2413 12213 Tot A 10 Average Neonates per Female = 34.6% Females with 3rd Brood = 90Replicate Conc. 1% Day 10 Initals 2 5 9 \mathcal{O} \circ 0 0 0 \bigcirc 0 0 O_{\parallel} 0 Mes-N В 0 0 2 N В 0 0 0 0 0 0 0 0 3 Ν В 0 0 0 0 0 0 Ö 0 700 4 4 2 2 4 Ν В 4 4 ч TAC 2 10 2 8. 2 10 2 4 10/2 10 2 8-6 8 map 5 N В lo 18 3 14 3 153 16 3 10 3 6 N 7 N В 8 Ν В Tot B 162 12613 Tot N Tot A 10 Average Neonates per Female = 25.7% Females with 3rd Brood = 90Conc. Replicate 3% Day 2 5 8 9 10 Initals 6 0 \mathcal{O} 0 0 Q MAP 0 0 0 1 N В 0 0 2 0 N 0 0 0 0 0 0 В 0 0 0 TAO 3 N В 0 6 0 0 0 0 0 0 0 0 77g0 4 4 4 5 N В 4 Ч 4 4 2 <u>a</u> 5 N В lo 10 2 જ 9 ۶ 2 10/2 11 Z 12 2 12 2 &m 153 3 143 6 N В 14 18 3 163 163 16 3 11813 7 Ν В 8 N В 28 3 28 3 Tot N Tot B 130 12813 Tot A 10 Average Neonates per Female = 28.5% Females with 3rd Brood = (N=Neonates, B=Broods, A=Alive) Observations:

CHCDLCRP.wk3

Q N В O MPF Ν В N В N В δ 8/2 10/2 N В \mathbb{H} 7-1 mer 12/3 14 3 N В В N N В 30 3 Tot N Tot B Tot A Average Neonates per Female = $\sqrt{2}$. O % Females with 3rd Brood = 90Replicate Conc. 30% Initals Day O m~ N В В mar N MO Ν В Ч N TAC 10 2 Z N В ngo N В N В N В 1412 1412 Tot N Tot B Tot A Average Neonates per Female = 24.6% Females with 3rd Brood = 30Conc. Replicate 200% Day Initals B N В N В N ₿ ð t 72° $\overline{\mathcal{Q}}$ Q Ż B my N В 14 3 ථ 3/10/2 N В N В Tot N Tot B MIZI Tot A % Females with 3rd Brood = SOAverage Neonates per Female = $\int (o) dt$ (N=Neonates, B=Broods, A=Alive) Observations: CHCDLCRP.wk3

Ceriodaphnia dubia, Survival and Reproduction Test
American Aquatic Testing, Inc.,
Survival / Reproduction Data

Replicate

Project Number: 51-01-86

Conc.

Day

Beginning Date & Time: 8-19-08 1710

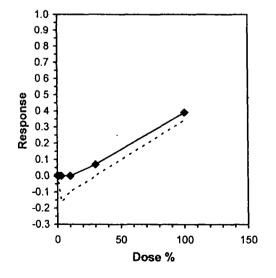
Initals

Ending Date & Time: 8-25-08 (730

Client/Toxica Job Number	: 01-36						Beginn Ending	ing Da Date	te & Tir & Time:	me: 8-19-08 1710 : 8-25-08 1750
Freshwater Chronic Test American Aquatic Testing, Inc., Physical / Chemical Parameters Initial Readings										
					<u>D</u>	ay				
Parameter	Concentration		2	3	4	5	6	7	8	Conductivity (µmhos/cm)
T	Control	25.0	9,5			32.0				Date Control 100%
е -	1%	25.0	245	25.0		25-01				8/19 291 951
m	3%	25.0	34.5	25.0	2510	250	0-0			8/21 289 951
p	10%		245	25.0	35.0	25.0	20			8/23 289 946
(00)	30%		84.5			25.0				
(°C)	100%	25.0	91.5	25.0	05.0	25.0	00			Initials MP MRP
	Control	75	8.7	0.0	42	172	100			Alkalinity (mg/L as CaCO ₃)
1		78	44	80	8.0	7.7	8.0			Date Control 100%
Dissolved	1%	78			8.0	7.7	8.0			8/9 70 180
Oxygen	3%	7.8 7.7	7.9	80	7.9	7.7	7-9			
Oxygen	30%	7.5	76	7.5	7.4	7.2	7-8			المناكبات بدرنيات وينصنوناتون والوراغ بالانا
(mg/L)	100%	7.6	68	6.6	6.5	6.4	69			8/23 70 160
(1119/12)	. 10078	7.10	10.1	10.10	0-3	3.7	0.1			
	Control	8.1	8.1	aı	7.9	8.1	8.1			Hardness (mg/L as CaCO ₃)
1	170	8.0	8.1	81	7.9	81	8.1			Date Control 100%
pН	3%	80	8.1	8.0	7.5	8-1	8-1			8/19 90 430
P	10%	7.9	8.1	7.9	7.8	8.0	8.0			8/21 90 410
	30%	7.9	81	7.7	7.7	7.8	7.9			2/23 90 360
}	100%	78	n.X	7.4	7.4	7.4	79			2/23 10 30
1		7.0	1-0-	751-	7.1	12.1				
	Initials	MP	1	МИР	TAP	TR	NPP			Initials YOU YOU
	Date	819	X 20	821	8/22					
•			Final F	leadin	gs					Chlorine (mg/L)
					D	ay				Date Control 100%
Parameter	Concentration	1	2	3	4	5	6	7	8	N19 000 002
Τ (Control	250			25.5		25.0			8/21 0.00 0.01
е							25.0			8/23 0.00 0.00
m	3%	250			3-2.2		25.0			
P	10%	250	25.0				25-2			NaSO4 Added (mg/L)
(00)	30%	250	25.0		92.2		25-0		ļ	
(°C)	100%	100	25.0	255	192.2	75.0	35,0		ļi	Date Sontrol 100%
	<u> </u>	1		 	-				ļ	
'	Control	111	7.4	76		8-0	7.9		ļi	
Disaskard	1%	148)	74	76	7.7	8.0	7.9		ļ	
Dissolved	3%	124	7.4	76	7.7	8.0	7.9		 	Labrata to the control of the contro
Oxygen	10%	120	3.5	25	3.7	8.0	7.9		ļ	Initials WW W
(/1)	30%	10	7.6	7.5	7.6	8.0	8.0		 	
(mg/L)	100%	128_	15	7.5	7.6	10-0	8.2			06
	Cantral	1 027	70	177 V	1-70	100				Observations: 08.4 MAP 8/2
1	Control	191-	47	18		8.2	8.1		 	
رام ا	1%	8	7.9	1/1/20	7.9	82	8.1		 	
pН	3%	8.1	78	12		8.2	8.1		 	
}	10%	80	7.8 7.8	7%	7.9	82	2.2		ļ	
	30%	80	38	7.8	8.0	83	8.3		 	
1	100%	81	000	183	8.3	8.4	8.4		 	
L	Initials	//VE	MA	ly ML	10	4000	700		<u> </u>	
BUCLIDADD		820	821	8 20	179	4/24	100 8/25		 	
PWCHPAPR.wk3	Dale	1000	1014	1 01 <i>118</i>	18123	1 4124	1014	I	1	1

			Cerioda	phnia Sur	vival and	Reprodu	uction Tes	t-7 Day	Survival		
Start Date:	8/19/2008		Test ID:	510186cd			Sample ID	:	Rutgers		
End Date:	8/25/2008		Lab ID:	AAT, Inc		-	Sample Ty	rpe:	Grab		
Sample Date:			Protocol:	EPAF 94-6	EPA/600/4	I-91/002	Test Speci	ies:	CD-Ceriod	laphnia dubia	
Comments:				<u> </u>							
Conc-%	11	2	3	4	5	6	7	8	9	10	
Control	1.0000	1.0000	1.0000	1.0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1 0000	
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
10	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
30	- 1.0000	1.0000	1 0000	1.0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	
100	1.0000	1.0000	- 1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

	-			Not			Fisher's	1-Tailed	Isotonic			
Conc-%	Mean	N-Mean	Resp_	Resp	Total	N	Exact P	Critical	Mean	N-Mean		
Control	1.0000	1.0000	0	10	10	10			1.0000	1.0000		
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		
3	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		
10	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		
30	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000		


Hypothesis	Test (1-tail, 0.	.05)	NOEC	LOEC	ChV	ΤU			
Fisher's Exa			100	>100		1			
Treatments	vs Control								
				Line	ar Interpo	lation (20	00 Resamples)		
Point	%	SD	95%	CL	Skew	•			
IC05	>100								
IC10	>100								
IC15	>100						1.0	 -	
IC20	>100								
IC25	>100						0.9		
IC40	>100						0.8 -	.	
IC50	>100						0.7.1		

			Ceriod	aphnia Su	rvival and	Reprod	uction Tes	t-Repro	duction	
Start Date:	8/19/2008		Test ID:	510186cd			Sample ID	:	Rutgers	
End Date: -	8/25/2008		Lab ID:	AAT, Inc			Sample Ty	/pe:	Grab	
Sample Date:			Protocol:	EPAF 94-E	EPA/600/4	-91/002	Test Speci	ies:	CD-Cerioo	laphnia dubia
Comments:	•						-			
Conc-%	1	2	3	4	5	6	- 7	- 8	9	10
Contro	1 24.000	22.000	22.000	34.000	14.000	14.000	28.000	28.000	32.000	28.000
1	16.000	30.000	26.000	28.000	30.000	26.000	29.000	28.000	18.000	26.000
	3 26.000	29.000	30.000	28.000	28.000	30.000	32.000	26.000	28.000	28.000
. 10	22.000	30.000	18.000	26.000	30.000	30.000	27.000	32.000	26.000	29.000
30	14.000	14.000	27.000	26.000	25.000	26.000	28.000	30.000	30.000	26.000
100	8.000	24.000	8.000	20.000	16.000	24.000	22.000	11.000	14,000	14.000

				Transform	n: Untran	sformed		_	1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
Contro	24.600	1.0000	24.600	14.000	34.000	27.650	10				26.450	1.0000	
1	25.700	1.0447	25.700	16.000	30.000	18.889	10	-0.471	2.287	5.336	26.450	1.0000	
_ 3	28.500	1.1585	28.500	26.000	32.000	6.459	10	-1.671	2.287	5.336	26.450	1.0000	
10	27.000	1.0976	27.000	18.000	32.000	15.810	10	-1.028	2.287	5.336	26.450	1.0000	
30	24.600	1.0000	24.600	14.000	30.000	23.719	10	0.000	2.287	5.336	24.600	0.9301	
*100	16.100	0 6545	16.100	8.000	24.000	38.227	10	3.642	2.287	5.336	16.100	0 6087	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Kolmogorov D Test indicates non	-normal dis	tribution	(p <= 0.05))	1.07707		0.895		-0.6774	-0.0234
Bartlett's Test indicates equal var	iances (p =	0.02)			13.3376		15.0863			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	30	100	54.7723	3.33333	5.3361	0.21691	188.457	27 2278	4.7E-05	5, 54
Treatments vs Control										

				Linea	ar Interpolation	(200 Resamples)
Point	%	SD	95%	CL	Skew	
IC05	24.297	10.691	6.063	41.954	0.1032	
IC10	36.547	10.801	14.886	54.113	-0.1799	
IC15	47.438	11.666	22.844	67.485	-0.2349	1.0
IC20	58.329					0.9 🖥
IC25	69.221					08-
IC40	>100					0.7
1C50	>100					06

ient/Toxica oject Numt oecies:	nt.		,				**		
oject Numt	#1C	51				Beginning	Date & Tir	ne: <u>8,7</u> 8/08	9-08
ecies:	ber:			 -	•	Ending Da	ate & Time;	. 810	e/128 11
	F	Down el	as			Hatch Dat	$e: \mathcal{S}_{i}$	8/08	· · · · · · · · · · · · · · · · · · ·
		V					V /L		
-		··	•	Chro	nic Test				
_		·_ ·~ -	Ama			na Ina			
. 4-			Allie	rican Aqu		ng, mc.			
C	Do-	David	David.		Count	Thou	Dove	Dove	Day 7
Conc.	Rep	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
	A	10		10	10	10	10	1 10	18
cntral	В	1,0	Q	10	12	10	10		ΙÚ
cntrol	C	1/0	10	10	IO.	10	lo	10	10
	D	10	<u> </u>	10	10	10	10	1 10	10
	<u>A</u>	<u> </u>	ĬŎ	<u>io</u>	18	10	10	10	10
10/	В	70	10_	10		10	10	10	10_
1%	С	lo	10	10	<u> </u>	10	lo	10	O O
	D	10		10	10	10	10	10	Ю
	Α	10	8	10	(0)	10	10	0	9'
70/	В	10	10	10	ĺŎ	10	lo	0	i O
3%	С	10	10	10	Ŏ	10	_10	0	10
	D	48	10	10	10	10	10	10	10
	Α.	1/0	10	. 10	10	10	10	10	10
/	В	10	10	10	10	10	lo	NO.	10
10%	C	10	10	10	1)0	10	(0	18	10
	D	70	10	10 -	10	10	10	10	10
	A	7,0	10	10	10	10.	10	10	10
,	В	10	qı	9	9	9	9	Pi	X
30%	С	10	10	10	10	10	(0		10
	D	70	10	10_	10	10	10	10	91
	A	10	110	10	10	10	10		10
	В	18	10	10	10	10	10	10	10
100%	C	70	10	10	10	10	10	0	10
-	D	70	10	10	lig	10	10	110	1 10
	A	l v	 'V	1 12			1 10	10-	
	В		 		 	<u> </u>	 	1	
	C		 		 	-	-		
	D		 	 	 	}	 		
lniši ala		11016	11M=	I III D		100	100	+,100-	 \1 00>
		819	130	8/21	Alm.	1.770	824	11/2/25	17/1/
Initials Date		1 13 16 1	7,70	0/21	NYL.	1 8/2	1 0127	1 0\1	1 X 1/10/

CHFHLC.wk3

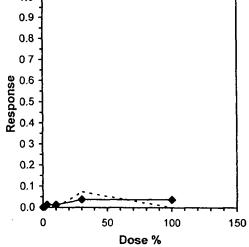
	ant:	·	<u> </u>			Beginning	i Date & Time	3-19-08
Project Num	ber:	0	1-86			Ending D	ate & Tigher	8/06/08 14
Client/Toxica Project Num Species:	P;	2 <u>CUM</u> 8	las			Hatch Dat	ie: <u>0[1070</u> }	
	·			Chron	ic Test			
	-		. An		itic Testing, Inc	.	1	
				•	it Data	-		
			Α		(B-A)*1000=C	D	C/D	C/E
0/0			weight of	weight of	dry weight of	# of	mean dry	IC25 & NOEC
10		Þan	boat	boat & fish	fish	surviving	weight	calc. weight
Conc.	Rep	#	(g)	(g)	(mg)	fish	(mg)	(mg)
· · · · · · · · · · · · · · · · · · ·	Α		0.01727		3.07	<u> </u>	0.367	0.307
O	В	3	0.01276	0.01601	3.25	10	0.325	0.332
Control	С	3		001673	2.87 2.32	10	0.287	0 287
	D	4	b.o.1372	T	9.33	(0	<u>0.232</u>	0.232
	A	5		0.01672	3.80	M		0.380
1	В	6	0.0/290	001602	3.12	[D_		0.312
1	С	7	0.0230	00 1577	3.47	<u> </u>		0.347
	D	1 8	p.0/31.4	p. 2/5/14	3.60	10		0.360
	A	9	0.0/276	0.0 1460	1.84	17		0.184
3,	B	10	001134	b.o 1471	3.20	<u> </u>		0.320
_ /	D	115		00 1598	3.53 3.51	 		0 353
	A	13	T		1 3 1 8	1 10		0.351
_	B	14	0.01168	15-02	3.48	10		0.368
10	C	15	0.01175	00 1586	J. 40	1		0.340
•	D	16	0.01773	001588	3.10	10		0.310
	A	17	961100		3.86			0.386
	В	18		0.0 1601	3.41	T X		0 341
30	C	19	2.01902	001538		10		0.333
	D		0.01188	0.0 1522	3 33 3.34	9		0.334
	Α	21		0.01568	3.04	1.0		0 304
100	В	23	001153		3.64	10		0.364
100	С	23	001196	0.0 1510	3.14	ĬĎ		0.314
	D	124	001332	0.0 1510 0.0 1698	3.66	10		0 366
	Α		<u> </u>	ļ				
	B	ļ	<u> </u>		ļ <u>.</u>		·	
	C			ļ] 	
	D	<u> </u>	<u> </u>		<u> </u>			
	├ ──	tials	4hd	Tha	Tho	1100	the	Jaho
	D	ate	18/20/08	801168	80708	13/06	8017618	18/27/08

CHPHWT.wk3

Client/Toxica	ant: 5	1					Rogins	sina Da	to & Ti	me: 8	-19-12	luan
Job Number		ļ					Ending	ınıy va ı Dəta İ	le ol III	: X	19-03	1750
Species:	P.proneles	,	<u>*</u> .				Litonie	, Daic (•	autor 1	30
	1 : promeies		A	merica ysical	n Aqu / Che Initial	atic To mical Readi	onic T esting, Paran ngs	Inc.,	- -	. <u>.</u>	- '	
	6		<u> </u>			ay	1 6	- 		0	4 4 7	- h / \
Parameter	Concentration	1	2	3	4	5	6	1000	8		uctivity (ur	
1	Control	25.0	215_	250	35.0		25.0	25.5		Date	Control 291	100%
е	1%	23.0	24.5	25.0	25.0	25.0	15.0	255		8/19		951
m	3%	250	215	25.0		25,0		255		8/21	289	951
р	10%	25.0	24.5	25.0	35,0	250	25.0	25.5		8/23	289	946
(00)	30%	25.0	245		25.0	25,0	15.0	255			-	
(℃)	100%	255	24.5	255	25,0	25.0	15.0	960		Initials	1 4 4 4 4 4 4 4 4 4	and
	Control	 0	100.4	00	132 \	-> ->		1 P				
		7.8	8.0	80	8.0	7.7	8.1	7.8			ity (mg/L a	100%
Dissolved	1%	7.8	79	80	8,0	3,7	8.0	78		Date		100%
	3%	78	19	8.0	7.9	7.7	7-9	ns		8/9	70	700
Oxygen	30%	7.7			7.4	7.3	-				70	200
(mg/L)	100%		760	7.5	6,5	6.4	7.8	76		18/23	70	160
(1119/12)		6.6	68	66	10,3	0.7	6.9	ر ما		 	 	
	Control	81	8:1	81	7.9	8.1	8.1	81		Hardn	ess (ma/l	as CaCO ₃)
İ	1%	80	8.1	81	79	8.1	8.1	8.1		Date	Control	1,00%
pН	3%	8.0	81	8.0	79	8.1	8.1	8.1		XIII	90	1130
P ''	10%	79	8.1	79	7.8	8.0	8.0	80		\$2	90	410
	30%	74	8.0	五	7.7	7.8	7.9	78	 -	8/23	50	360
	100%	78	n 8	44	7-4	7.4	19	76		07/3	10	٥٥ ود
	100/8	7-0	1.0	1-1-1	7.4	7.7	1-1-1	1,0			 	
	Initials	MAD	TITAL	MP	TAP	TRE	RP	mc I		Initials	1110h	1104
	Date	8/19	800	821	8/22	8/23	8/24	305		T. HELGH	T WAVE	HI W
			Final F			<u> </u>	10101	رجهور		, L	Chlorine (n	nta/L)
					<u> </u>	ay				Date		100%
Parameter	Concentration	1	2	3	4	5	6	7	8	8/19	000	002
T	Control		250	25.0	25.0	75.0	25.0	25·O		8/21	0.00	0.0
е	1%	24.5	25.0	25.0	25.0	8.0		25.D		8/21	0.00	0.00
m	3%		25.0					25.0				
p	10%	24.5		2510				24.5		Nas	O4 Added	(mg/L)
	30%	24.5	25.0	250	25.0	8.0	25,0	24.5				
(°C)	100%	24-5	25.0	25,0	25-0	3.0	350	24.5		Date	Control	100%
L		<u> </u>										
	Control	7.4	73	7.4	76	7.4	7.4	7.9				
	1%	75	74	7.4	76	7,4	7.4	7.8				
Dissolved	3%	7.5	74	7.4	7.6	7.3	7-4	7.7				
Oxygen	10%	17.4	7.4	7.3	7.5	7.4	7.4	7.5		Initials	3 VBM	UNC
	30%	7.3	7.2	73	7.4	7.3	74	7.3				
(mg/L)	100%	7.4	7.1	7.1	7.3	7.3	7-5	7.7]		
		<u></u>								Observat	ions: `	
	Control	7-8	7.3	7.6	7.8	8.2	7.9	7.9]		
1	1%	7.8	173	7.6	7.7	8.2		7.8				
рН	3%	7.8	7.4	7.6	78	8,2	79	7.7		}		
1	10%	7.8	74	7.6	7.7	8.2	80	7.7		1		
}	30%	7.9		7.8	8.0	8.2	8.0			1 ——	 	
1	100%	8.2		8,3		8.3	8.2			1		

MR MID TOP TO MR TO MER 8120 8131 8122 822 Clou 21 - Rh.

Initials Date

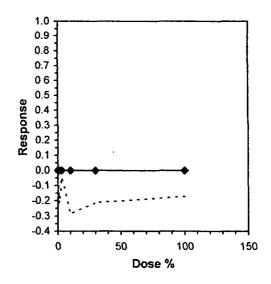

PWCHPAPR wk3

			La	rval Fish Growth and Survi	val Test-7 Day Su	ırvival
Start Date:	8/19/2008		Test ID:	510186pp	Sample ID:	Rutgers
End Date:	8/26/2008		Lab ID:	AAT, Inc	Sample Type:	Grab
Sample Date:			Protocol:	EPAF 94-EPA/600/4-91/002	! Test Species:	PP-Pimephales promelas
Comments:	بالمناس		· ·			
Conc-%	1 -	2	3	4		
Control	1.0000	1.0000	1.0000	1 0000		
- 1	· · 1.0000 -	1.0000	1.0000	1.0000		
3	0.9000	1.0000	1.0000	1.0000	-	
10	1.0000	1.0000	1.0000	1.0000		
 	1.0000	0.8000	1.0000	0.9000		
100	1.0000-	1.0000	1.0000	1.0000		

_			Tra	Transform: Arcsin Square Root					1-Tailed		Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	4				1.0000	1.0000	
1	1.0000	1 0000	1.4120	1.4120	1 4120	0.000	4	0.000	2.410	0.1169	1.0000	1.0000	
3	0.9750	0.9750	1.3713	1.2490	1.4120	5.942	4	0.840	2.410	0.1169	0.9875	0.9875	
10	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	4	0.000	2.410	0.1169	0.9875	0.9875	
*30	0.9250	0.9250	1.2951	1.1071	1.4120	11.347	4	2.411	2.410	0.1169	0.9625	0.9625	
. 100	- 1.0000	- 1.0000	1.4120	1.4120	1 4120	0.000	4	0.000	2.410	0.1169	0.9625	0.9625	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor		0.73394		0.916		-1.0941	4.29567			
Equality of variance cannot be co	nfirmed									
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	Τυ	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	0.04909	0.05035	0.00896	0.00471	0.14381	5, 18
Treatments vs Control										

			Line	ear Interpolation (200 Resamples)	
Point	%	SD	95% CL(Exp)	Skew	
C05	>100				
C10	>100				
IC15	>100			1.0 -	
IC20	>100			201	
IC25	>100			0.9	
IC40	>100			0.8 -	
IC50	>100			07-	



			La	rval Fish Gro	owth and Surviv	al Test-7 Day Bi	omass
Start Date:	8/19/2008		Test ID:	510186pp	# 7 12 Ja	Sample ID:	Rutgers
End Date	8/26/2008		Lab ID:	AAT, Inc		Sample Type:	Grab
Sample Date: Comments:			Protocol:	EPAF 94-EI	PA/600/4-91/002	Test Species:	PP-Pimephales promelas
Conc-%	1	2	3	4			
Control	0.3070	0.3250	0.2870	0.2320	· · · · · · · · · · · · · · · · · · ·	······································	
1	0.3800 -	0.3120	0.3470	0.3600			
3	0.1840	0.3200	0.3530	0.3510			
_ 10	0.3680	0.3900	0.4110	0.3100			
30	0.3860	0.3410	0.3330	0.3340			
100	0.3040	0.3640	0.3140	0.3660			

					Transform: Untransformed					1-Tailed			Isotonic		
C	onc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean		
	Control	0.2878	1 0000	0.2878	0.2320	0.3250	13.997	4				0.3325	1.0000		
	1	0.3498	1.2155	0.3498	0.3120	0.3800	8.175	4	-1.925	2.410	0.0776	0.3325	1.0000		
·-	_ 3	0.3020	1.0495	0.3020	0.1840	0.3530	26.525	4.	-0.442	2.410	0.0776	0.3325	1.0000		
	10	0.3698	1.2850	0.3698	0.3100	0.4110	11.773	4	-2.546	2.410	0.0776	0.3325	1.0000		
	30	0.3485	1.2111	0.3485	0.3330	0.3860	7.246	4	-1.886	2.410	0.0776	0.3325	1.0000		
-	·· 100	0.3370	1.1712	0.3370	0.3040	0.3660	9.673	4	-1.529	2.410	0.0776	0.3325	1.0000		

Auxiliary Tests			Statistic		Critical		Skew	Kurt		
Shapiro-Wilk's Test indicates nor		0.91638		0.916		-1.1737	1.73897			
Bartlett's Test indicates equal vai			5.28301		15.0863					
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	100	>100		1	0.07763	0.26979	0.00392	0.00208	0.1468	5, 18
Treatments vs Control										

			Line	ear Interpolation (200 Resamples)
Point	%	SD	95% CL(Exp)	Skew
IC05	>100			
IC10	>100			
IC15	>100			1.0
IC20	>100			0.9
IC25	>100			0.8 🕽
IC40	>100			0.7 1
IC50	>100			06 🖥

890 No	NVIERICAN AQUATIC TEST 90 North Graham St. Job #: 5/-0/ LLENTOWN, PA 18109					<u>Clie</u>	ent: Iress:	Rutgers 1224 BENT	organics Tou Ro	Client Con	tact:			STODY	
610 43		,					Pho	ne #:	(330) 332-		Sam	ple	Return <u>Lab dis</u>		nt [] [X]
		Upo		hemistry @ Labor	atory		-		SAMPLE IN	FORMAT		osui.		Toxicity	Testing
Sample #	Temp °C	Dis. O ₂	pН	Alk. mg/L	Hard. mg/L	Cl- mg/L	Sample Identif	ication (Sample Type C = Comp G=Grab	Sample Volume	Sample Date	Sample Time	Acute	Requ	Sediment Oth
01	11.0					·	OUTFALL 8-	18.08	6	2 GAL.	8-18-08	1230	1	X	
1															
Samples v	cted by	AAT per			[]: 	2. Transı Yes [>	oorted on ice?	? 3. 1	Received with	•	me? 4. Sampl	e matrix is	s: Lic So		Sediment [] Other []
	:			-,			CUSTOD		RMATION						Lab Use
Sample #		linquish			eceive	l by:	Date	Time		shed by:	Received for	or Lab:	Date	Time	
_0[DEA	my LA	NE.	Fea	ex	-	8-18-08	1400	Fed	ex	Vilhay	Poles	8/19/08	1900	08723
;				-		١									
1	1 1														
10 1	1	1.1							 						
<u> </u>	1 1	<u> </u>					+								
-1	1 :	11 1													
Special In	etruction	e: Dibut	ion water	collection	n date(s)		<u> </u>		Will ammon	ia he analyze	i on these sampl	leo?		Yes	A
Special II	isu uctiOI	ים. ביותו	on water	Conecue	m uale(S)						be analyzed on		oles?	Yes	/Ng)
, ,															

			_				G, INC.	4	Hovelsit	Baird	Client Con	CH	AIN O	F CU	JSTOI
		ham St.		Job #:	51-	0/-86			Rutsers	Organics !	Chent Con	tact:	R. MWE	e Do	MALSKI
		N, PA 1	8109								COLLEGE, PA		Dataras	40 01:0	4 f 1
610 43	4 9015						Pno	,	SALEM, OH		Sam		Return		
								(;	814) 231 - 9.	200	Disp	osal:	Lab dis	oosal	
		Upo		Chemistry @ Labor					SAMPLE IN	NFORMATI	ON		r	oxicity Requ	Testing ested
Sample #	Temp °C	Dis. O ₂	pН	Alk. mg/L	Hard. mg/L	Cl- mg/L	Sample Identif	ication C	Sample Type = Comp G=Grab	Sample Volume	Sample Date	Sample Time	Acute	Chronic	Sediment
02	5.0						OUTFALL 8-	20-08	G	2 GAL.	8-20-08	1400		X	
	,														
							1								
Samples v 1. Collec	cted by	AAT per lient per			[] X	2. Trans Yes [Yes []	in holding tir	ne? 4. Samp	le matrix i	s: Lic Soi		Sediment Other
								r 	RMATION				I	т	Lab
Sample #		linquish			Receive		Date	Time		ished by:	Received f		Date	Tim	
02	DE	NNY LA	WE		Fed e	×	8-20-08	1500	Fed	ex	T.Pal	lgs	8-21-08	920	087
·	+														-
Special Y	notavatia	ns: Dilu	*ia=	m an 11 1	am d-+a/-				Will amount	vio ha onolysta	l on these serve	lea?		Yes	(NG)
Special II	ISTUCTION	is: Dilu	tion wate	r collecti	on date(s)					on these samp be analyzed or		nles?	Yes Yes	(No)
	· · · · · · · · · · · · · · · · · · ·							<u>,</u>	TTIL AGGILLO	nui paramotors	. 55 mining 200 01	- Hose sain	P.00.		

			_				G, INC.		Hovelsib	Paird	C1: C	CH	AIN O	F ÇU	J STO I) J	
	orth Gra			Job #:	51-	01-80		ent:	Rutsers .	Organics	Client Con	tact: <u>U</u>	2. KAINE	RLO	MALSK		
	WOTV	N, PA 18	8109					iress:	201 STRUBE	EKO, STA	TE COLLEGE,	ta. 1680 1	T		, ,		
610 43	4 9015						Pho	ne#: (814) 231- Em, Otio .	<u>-9200</u>	Sam	_	Return			l	
								SAL	EM, OHIO.	SITE	Disp	osal:	<u>Lab dis</u>	posal	<u>×</u>	Ĺ	
		Upor		hemistry @ Labor					SAMPLE IN	(FORMAT)	ION		7	Toxicity Testing Requested			
Sample #	Temp °C	Dis. O ₂	pН	Alk. mg/L	Hard. mg/L	Cl- mg/L	Sample Identii	ication C	Sample Type = Comp G=Grab	Sample Volume	Sample Date	Sample Time	Acute	Chronic	Sediment	0	
01	4,0						OUTFALL8	-22-08	G	2 GAL	8-22-08	1300		X		-	
1																	
						<u> </u>										-	
																_	
																_	
Samples was Collect	cted by A	AAT persient pers			[] []		ported on ice [No [] CUSTOD			in holding ti No []	me? 4. Samp	le matrix is	s: Lic So		Sediment Other Lab		
Sample #	Rel	inquish	ed by:	F	Receive	d by:	Date	Time	Relinqui	shed by:	Received f	or Lab:	Date	Tim	e IST	N	
	DE	uny LA	NE		Fede	'×	8-22-08	1400	Fed	ex	T.P.	llg	8/23/08	131	5 00	7	
	 																
																_	
<u> </u>																	
	struction	e Diluti	on water	collection	on date(s)	\			Will ammon	ia he analyzed	on these samp	les?		Yes	NO	_	
Deciai ir		المالمالات و	. Ou watci			,			I LL TY OTTITION					1 ~3			

APPENDIX II

OHIO EPA NPDES BIOMONITORING REPORT FORM

Date Created: 5/24/91 Page <u>1</u> of <u>5</u> Last Revised: 9/23/91 OHIO EPA NPDES BIOMONITORING REPORT FORM GENERAL INFORMATION 1. Facility Name: Ruetgers-Nease Corporation Reporting Date: September 6, 2008 2. Address: 1224 Benton Road Salem, Ohio 44460 Substantive 3. Ohio EPA Permit Number: Discharge Criteria 4. Application (NPDES) No. 5. Facility Contact: Ralph Pearce 6. Phone No.: (800) 458-3434 7. Consultant/Testing Lab Name: American Aquatic Testing, Inc. 8. Consultant/Lab Contact: Chris Nally 9. Phone No.: (610) 434-9015 10. Receiving Water(s) of Discharge: Unnamed Tributary of the Middle Fork of Middle Creek. 08/18/08 08/20/08 08/22/08 11. Outfall(s) Tested: 001 001 001 . Average Daily Flows: on Day Sampled (gal/day)

12. Is your current Standard Operating Procedure (SOP) Manual on file with Ohio EPA? (Yes/No) No If yes, date submitted:

If no, an SOP that follows Ohio EPA and/or U.S. EPA protocols must be submitted as soon as possible in order to eliminate the need to include this information with every report.

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Christopher J. Nally, President

 OEPA	Permit	No.:						Page	2	of	5	
			GUDOUTG	ייטעדכדייע				_				
			CHRUNIC	114) X (' 114)	The Carls	CAMIDI TNI	אידי ארו					

TABLE

Sampling Summ	mary for Ch	ronic To	xicity	Tests	
Sampling Location & Description	Sample	Collect	ng 'ime	Ending	Weather/Receiving Stream Conditions
Final Effluent: Processed Water					
Outfall No.: 001	1st	08/18	1230	N/A	N/A
Type (Grab/Composite): <u>Grab</u>	2nd	08/20	1400	N/A	N/A
Volume Collected: 2.5-gallon	3rd	08/22	1300	N/A	N/A
Upstream Station:		N	I/A	N/A	N/A
Waterbody:	1st				
Station No.:	2nd				
Type (Grab/Composite):	3rd				
Volume Collected:					
Downstream Station (Near-field):		N	I/A	N/A	N/A
Waterbody:	lst				
Station No.:	2nd				
Type (Grab/Composite):	3rd				
Volume Collected:					
Downstream Station (Far-field):		N	I/A .	N/A	N/A
Waterbody:	lst				
Station No.:	2nd				
Type (Grab/Composite):	3rd				
Volume Collected:					
Additional Stations (If needed):		N	1/A	N/A	N/A
Waterbody:	lst				
Station No.:	2nd				
Type (Grab/Composite):	3rd				
Volume Collected:					

OEPA	Permit	No.:		

Page __3 of __5

TOXICITY TEST CONDITIONS

TABLE

Summary of Toxicity Test Conditions

- 1. Test Species and Age:
- 2. Test Type and Duration:
- 3. Test Dates:
- 4. Test Temperature (°C):
- 5. Light Quality:
- 6. Photoperiod:
- 7. Feeding Regime:
- 8. Size of Test Vessel:
- 9. Volume and Depth of Test Solutions:
- 10. No. of Test Organisms per Test Vessel:
- 11. No. of Test Vessels per Test Solution:
- 12. Total No. of Test Organisms per Test Solution:
- 13. Test Concentrations (as
 percent by volume effluent):
- 14. Renewal of Test Solutions:
- 15. Dilution and Primary Control Water:
- 16. Secondary Control Water:
- 17. Aeration? Before/During Test:
- 18. Endpoints Measured:
- 19. If secondary control water used as diluent due to toxicity in primary control water, indicate number of consecutive tests conducted with alternative diluent:

Ceriodaphnia dubia - 2 to 7 hrs old

3 brood Chronic Toxicity Test

August 19 - August 25, 2008

25.0°C

340-ft candles

16 hours light / 8 hours dark

0.1 mL Selenastrum and 0.1 mL YCT daily

30 mL

15 mL / 25 mm

One

Ten

Ten

0%, 1%, 3%, 10%, 30%, and 100%

Daily

Moderately Hard Reconstituted Water

N/A

None

NOEC, LOEC, TUc, ChV, LCso, IC25

N/A

CHRONIC TOXICITY TEST RESULTS FOR CERIODAPHNIA DUBIA

TABLE		CILCOIN			TEBODI.				-1.	
Results of 08/19/08 (mm/dd/yy)	- 08/	(ger 25/08 Us	nus) (s	species) -	Outfall	•	ction Tes	t Conduc	ted	
		_		Cumulati	ve Percent	Mortality				
-			(Cun	nulative Pe	rcent Adve	rsely Affec	eted) a		Numb	er of
									Young Pr	oduced*
Test Solutions		1	2	3	4	5	6	7	Total	Mean
Primary control/		0	0	0	0	0	0	0		
Dilution water		(0)	(0)	(0)	(0)	(0)	(0)	(0)	246	24.6
Secondary		N/A								
Control		()	()	()	()	(_)	()	()	N/A	N/A
<u>1 %</u> Effluent		0	0	0	0	0	0	0		
		(0)	(0)	(0)	(0)	(0)	(0)	(0)	257	25.7
3 % Effluent		0	0	0	0	0	0	0		
		(0)	(0)	(0)	(0)	(0)	(0)	(0)	285	28.5
_10 % Effluent		0	0	0	0	0	0	0	270	27.0
20.07.500		(0)	(0)	(0)	(0)	(0)	(0)	(0)	270	27.0
30 % Effluent		0	0	0	0	0	0	0	246	24.6
100 0/ ECC		(0)	(0)	(0)	(0)	(0)	(0)	(0)	246	24.6
100 % Effluent		1 -	(0)	(0)	(0)	(0)	(0)	(00)	161	16.1
Near-Field		(0) N/A	(0)	_(0)	(0)	_ (0)_	(0)	(00)	101	10.1
Sample		IN/A	()	()	()	()	()	()	N/A	N/A
Far-Field		N/A							IN/A	1N/A
Sample		IN/A							N/A	N/A
Sample		()	()	()	()	()	()	()	N/A	17/7
									Calculated TU	Jc Value
NOEC Values		100 %	100 %	100 %	100 %	100 %	100 %	100 %	for Survival:	1.00
95% Confidence	LL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Limits	UL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
								<u> </u>	Calculated TU	Jc Value
EC ₅₀ Values		N/A	N/A	N/A	N/A	N/A	N/A	N/A	for Reproduct	ion: 3.33
95% Confidence	LL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Limits	UL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
7-day NOEC fo	r Mor	tality:	,	7-day NO	EC for Re	production	n:	Method	s) Used to Dete	ermine
100%		<i>J</i> -		,	30%			Values:	()	
7-day LOEC fo	r Mor	tality:	7-day LOEC for Reproduction:					Kolmog	orov D	
Not Dete		. •		•	Not Detect	-				
Chronic Value for	(hronic Va	alue for Re	enroductio	n.	Rartlett's Test				

3.33

a – indicate significant differences from the primary control with an * (p=0.05).

_

Page <u>5</u> of <u>5</u>

ADDITIONAL TOXICITY TEST INFORMATION

- 1. Submit all raw data and statistical calculations/printouts obtained during the test(s). Data must be presented in tabular form and must include all physical and/or chemical measurements recorded during the tests and sampling (e.g., temperature, conductivity, dissolved oxygen, pH, hardness, alkalinity, etc.).
- 2. Method(s) used to verify near-field and/or far-field sampling locations must be included if stream testing is required. Maps, sketches, and/or drawings may be used to show locations.

CONCLUSIONS/COMMENTS

Indicate below any other relevant information that may aid in the evaluation of this report. Include any deviations from your SOP that were necessary for these tests and any recent Standard Reference Toxicant (SRT) results obtained. Do these results agree with previous SRT results? Attach additional pages as needed.

Standard reference Toxicant	test:
Toxicant:	Potassium chloride
Date:	08/20-27/08
IC ₂₅ :	321.0 ppm
Average:	317.5 ppm
Upper Limit:	431.0 ppm
Lower Limit:	204.0 ppm
Test value +/- 2 std. Dev.:	Yes

Date Created: 5/24/91 Page 1 Last Revised: 9/23/91 OHIO EPA NPDES BIOMONITORING REPORT FORM GENERAL INFORMATION 1. Facility Name: Ruetgers-Nease Corporation Reporting Date: September 6, 2007, 2. Address: 1224 Benton Road Salem, Ohio 44460 Substantive 3. Ohio EPA Permit Number: Discharge Criteria 4. Application (NPDES) No. 5. Facility Contact: Ralph Pearce 6. Phone No.: (800) 458-3434 7. Consultant/Testing Lab Name: American Aquatic Testing, Inc. 8. Consultant/Lab Contact: Chris Nally 9. Phone No.: (610) 434-9015 10. Receiving Water(s) of Discharge: Unnamed Tributary of the Middle Fork of Middle Creek. 08/18/08 08/20/08 08/22/08 11. Outfall(s) Tested: 001 001 Average Daily Flows: on Day Sampled (gal/day) 12. Is your current Standard Operating Procedure (SOP) Manual on file with

12. Is your current Standard Operating Procedure (SOP) Manual on file with Ohio EPA? (Yes/No) No If yes, date submitted:

If no, an SOP that follows Ohio EPA and/or U.S. EPA protocols must be submitted as soon as possible in order to eliminate the need to include this information with every report.

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Christopher J. NaNy, President

/*09/08*

OEPA	Permit	No.:							-	Pag	је
			CHRO	DNIC	TOXICITY	TEST	SAMPLING	DATA			

_2 of _5

TABLE

Sampling Summary for Chronic Toxicity Tests								
Sampling Location & Description	Sample	Sample Collection Beginning MM/DD/Time MM/DD/Time		Ending	Weather/Receiving Stream Conditions			
Final Effluent: Processed Water								
Outfall No.: 001	1st	08/18	1230	N/A	N/A			
Type (Grab/Composite): <u>Grab</u>	2nd	08/20	1400	N/A	N/A			
Volume Collected: 2.5-gallon	3rd	08/22	1300	N/A	N/A			
Upstream Station:		Ŋ	/A	N/A	N/A			
Waterbody:	1st							
Station No.:	2nd							
Type (Grab/Composite):	3rd							
Volume Collected:								
Downstream Station (Near-field):		N	/A	N/A	N/A			
Waterbody:	1st							
Station No.:	2nd							
Type (Grab/Composite):	3rd							
Volume Collected:								
Downstream Station (Far-field):		N	I/A	N/A	N/A			
Waterbody:	lst							
Station No.:	2nd							
Type (Grab/Composite):	3rd							
Volume Collected:								
Additional Stations (If needed):		N	I/A	N/A	N/A			
Waterbody:	1st							
Station No.:	2nd				•			
Type (Grab/Composite):	3rd							
Volume Collected:								

OEPA Permit No.:	
------------------	--

Page <u>3</u> of <u>5</u>

TOXICITY TEST CONDITIONS

TABLE

** **=** 1.

Summary of Toxicity Test Conditions

- 1. Test Species and Age:
- 2. Test Type and Duration:
- 3. Test Dates:
- 4. Test Temperature (°C):
- 5. Light Quality:
- 6. Photoperiod:
- 7. Feeding Regime:
- 8. Size of Test Vessel:
- 9. Volume and Depth of Test Solutions:
- 10. No. of Test Organisms per Test Vessel:
- 11. No. of Test Vessels per Test Solution:
- 12. Total No. of Test Organisms per Test Solution:
- 13. Test Concentrations (as percent by volume effluent):
- 14. Renewal of Test Solutions.
- 15. Dilution and Primary Control Water:
- 16. Secondary Control Water:
- 17. Aeration? Before/During Test:
- 18. Endpoints Measured:
- 19. If secondary control water used as diluent due to toxicity in primary control water, indicate number of consecutive tests conducted with alternative diluent:

Pimephales promelas - < 48-hr old

7-day Chronic Toxicity Test

August 19 - August 26, 2008

25.0°C

340-ft candles

16 hours light / 8 hours dark

0.1 mL Artemia nauplii two times daily

1000 mL

500 mL / 92 mm

Ten

Four

40

0%, 1%, 3%, 10%, 30%, and 100%

Daily

Moderately Hard Reconstituted Water

N/A

None

NOEC, LOEC, TUc, ChV, LC50, IC25

N/A

- CHRONIC TOXICITY TEST RESULTS FOR Pimephales Promelas

TA	BI	F
14	-	-

Results of a 7-day Pimephales promelas Survival and Growth Test Conducted (genus) (species) 08/19/08 - 08/26/08 Using Effluent form Outfall 001. (mm/dd/yy) (mm/dd/yy) (number) Cumulative Percent Mortality^a (Cumulative Percent Adversely Affected) a Test Day Dry Weight* **Test Solutions** Total Mean 0 0 Primary control/ Dilution water (0)(0)(0)0.2878 (0)(0)(0)(0)1.1512 Secondary N/A Control N/A N/A 1 % Effluent (0)(0)(0) 1.3992 0.3498 (0)(0)3 % Effluent 0 0 (0)(0)(0)(0)(0)(0)(2.5)1.2080 0.3020 10 % Effluent 0 (0)0.3698 1.4792 (0)(0)(0)(0)(0)(0)30 % Effluent 2 3 (2.5)(2.5)(2.5)(2.5)(2.5)(5)(7.5)1.3940 0.3485 100 % Effluent 0 (0)1.3480 0.3370 (0)(0)(0)(0)(0)(0)Near-Field N/A Sample N/A N/A Far-Field N/A N/A N/A Sample Calculated TUc Value 100 % 100 % **NOEC Values** 100 % 100 % 100 % 100 % 100 % for Survival: 1.00 N/A N/A N/A N/A N/A N/A N/A 95% Confidence LL Limits UL N/A N/A N/A N/A N/A N/A N/A Calculated TUc Value EC Volum

EC ₅₀ values		N/A	N/A	N/A	N/A	N/A	N/A	N/A	for Reproduction: 1.00	
95% Confidence	LL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Limits	UL	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
7-day NOEC for Mortality:				7-day N	OEC for	Method(s) Used to Determine				
1009	%		100%					Values:		
7-day LOEC for Mortality:			7-day LOEC for Growth:					Shapiro-Wilks Test		
Not Detected			Not Detected							
Chronic Value for Mortality:			Chronic Value for Growth:					Bartlett's Test		
1.0			1.0							

a - indicate significant differences from the primary control with an * (p=0.05).

OEPA Permit No.:	-	Page <u>5</u> of <u>5</u>

ADDITIONAL TOXICITY TEST INFORMATION

- Submit all raw data and statistical calculations/printouts obtained during the test(s). Data must be presented in tabular form and must include all physical and/or chemical measurements recorded during the tests and sampling (e.g., temperature, conductivity, dissolved oxygen, pH, hardness, alkalinity, etc.).
- 2. Method(s) used to verify near-field and/or far-field sampling locations must be included if stream testing is required. Maps, sketches, and/or drawings may be used to show locations.

CONCLUSIONS/COMMENTS

Indicate below any other relevant information that may aid in the evaluation of this report. Include any deviations from your SOP that were necessary for these tests and any recent Standard Reference Toxicant (SRT) results obtained. Do these results agree with previous SRT results? Attach additional pages as needed.

	Standard reference Toxicant	<u>test:</u>
	Toxicant:	Potassium chloride
		
	Date:	08/19 - 26/08
	IC ₂₅ :	580.1 ppm
	Average:	543.3 ppm
	Upper Limit:	738.7 ppm
	Lower Limit:	347.6 ppm
		P
	Test value +/- 2 std. Dev.:	YES

OEPA Permit No.:		ACUTE TO	XICITY T	EST RESUI	Page 6 of 6	
Results of a Conducted_08/19	(genus)	(/23/08_:	species) Using Ef		Hour Static Acute Toxicity Test rom Outfall	
Test Solutions	Cumulat	ive Pero	cent Mort	ality	LC _{so} Values (EC _{so} Values) 24-Hr 48-Hr 72-Hr 96-Hr	
Primary Control/ Dilution Water	<u> </u>	<u> </u>	_(()	>100% >100% (<u>N/A</u>) (<u>N/A</u>) () ()	
Secondary Control	<u>N/A</u> ()	()	()	()	LC ₅₀ 95% Confidence Limits (EC ₅₀ 95% Confidence Limits)	
10_% Effluent	0 ()	<u>0</u> (0)	()	()	24-Hr 48-Hr 72-Hr 96-Hr	
18 % Effluent	<u> </u>	0 ()	()	()	LL <u>N/A </u>	
32_% Effluent	<u> </u>	0 ()	()	()	LL (<u>N/A</u>) (<u>N/A</u>) () () UL (<u>N/A</u>) (<u>N/A</u>) () ()	
56_% Effluent	<u> </u>	_ <u>0</u> (<u>0</u>)	()	()	LL = Lower Limit UL = Upper Limit	
100 % Effluent	<u> </u>	<u>1</u> (5)	()	()	Calculated TU _a Value:1.0	
Near-Field Sample	_ <u>N/A</u> ()	()	()	()	Method(s) Used to Determine LC_{50} , EC_{50} , and Confidence Limit Values: Visual Inspection	
a-cumulative perce	ent affecte	ed is th	e total	percentac	ge of test organisms observed dead,	

immotile, exhibiting loss of equilibrium, or other defined endpoints (specify below):